A Review on the Effect of Vagus Nerve Stimulation on Brain Frequency Bands

geleneksel tip-5-2-wos-kapak

Gülşah KONAKOĞLUa , Talar CİLACIb

aİstanbul Gelişim University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, İstanbul, Türkiye
bDemiroğlu Bilim University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, İstanbul, Türkiye

ABSTRACT
The vagus nerve, generally known as the parasympathetic efferent nerve, can be stimulated from different parts of the body using invasive or non-invasive methods. It is not known by what mechanisms vagus nerve stimulation works, and research on the subject continues. As a result of human studies, it has been shown that Vagus Nerve Stimulation (VNS) affects many areas of the brain at the subcortical and cortical levels. Electroencephalography (EEG) is a method of objectively imaging the electrical activity of the brain. Changes in EEG have been reported by vagal stimulation. In this review, studies examining the effect of VNS on brain frequency bands were evaluated. Literature suggests a need for studies examining short and long-term results of stimulations from different ears with different stimulation parameters on the brain frequencies of healthy and/or pathological individuals. In this way, auricular VNS can be used more specifically and effectively patients.
Keywords: Vagus nerve stimulation; electroencephalography; brain waves

Referanslar

  1. Pratap R, Farboud A, Patel H, Montgomery P. Vagal nerve stimulator implantation: the otolaryngologist's perspective. Eur Arch Otorhinolaryngol. 2009;266(9):1455-9. [Crossref]  [PubMed]
  2. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, et al. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31(7):1345-55. Erratum in: Neuropsychopharmacology. 2006;31(10):2329. [Crossref]  [PubMed]
  3. Foley JO, Dubois FS. Quantitative studies of the vagus nerve in the cat. I: the ratio of sensory and motor studies. J Comp Neurol. 1937;67(1):49-64. [Crossref]
  4. Özden AV, Çınar OY, Çorbacı T, Su DB, Uzer K, Alptekin HK. Auriküler vagus sinir uyarımının kişiselleştirilmesi ve optimizasyonu: personalization and optimization of auricular vagus nerve stimulation. Sağlık Bilimlerinde Yapay Zeka Dergisi (Journal of Artificial Intelligence in Health Sciences) 2021;1(3):6-10. [Crossref]
  5. Souery D, Serretti A, Calati R, Oswald P, Massat I, Konstantinidis A, et al. Switching antidepressant class does not improve response or remission in treatment-resistant depression. J Clin Psychopharmacol. 2011;31(4):512-6. [Crossref]  [PubMed]
  6. Buoni S, Mariottini A, Pieri S, Zalaffi A, Farnetani MA, Strambi M, et al. Vagus nerve stimulation for drug-resistant epilepsy in children and young adults. Brain Dev. 2004;26(3):158-63. [Crossref]  [PubMed]
  7. Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29(3):493-500. [Crossref]  [PubMed]
  8. Henry TR, Bakay RA, Pennell PB, Epstein CM, Votaw JR. Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. prolonged effects at high and low levels of stimulation. Epilepsia. 2004;45(9):1064-70. [Crossref]  [PubMed]
  9. Henry TR, Bakay RA, Votaw JR, Pennell PB, Epstein CM, Faber TL, et al. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia. 1998;39(9):983-90. [Crossref]  [PubMed]
  10. Barnes A, Duncan R, Chisholm JA, Lindsay K, Patterson J, Wyper D. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using 99mTc-HMPAO SPET brain images. Eur J Nucl Med Mol Imaging. 2003;30(2):301-5. [Crossref]  [PubMed]
  11. Bailey P, Bremmer FA. A sensory cortical representation of the vagus nerve with a note on the low pressure on the surface electrogram. J Neurophysiol. 1938;1(5):404-12. [Crossref]
  12. Dell P, Olson R. Projections thalamiques, corticales et cérébelleuses des afférences viscérales vagales [Thalamic, cortical and cerebellar projections of vagal visceral afferences]. C R Seances Soc Biol Fil. 1951;145(13-14):1084-8.
  13. Machetanz K, Berelidze L, Guggenberger R, Gharabaghi A. Brain-Heart Interaction During Transcutaneous Auricular Vagus Nerve Stimulation. Front Neurosci. 2021;15:632697. [Crossref]  [PubMed]  [PMC]
  14. Zanchetti A, Wpg SC, Moruzzi G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr Clin Neurophysiol. 1952;4(3):357-61. [Crossref]  [PubMed]
  15. Magnes J, Moruzzi G, Pompeiano O; United States Air Force Office of Scientific Research, Università di Pisa. Synchronization of the EEG produced by low frequency electrical stimulation of the region of the solitary tract. Archives Italiennes de Biologie.1961;99(1):33-67.
  16. Bonvallet M, Dell P, Hiebel G. Sympathetic tonus and cortical electrical activity. Electroencephalogr Clin Neurophysiol. 1954;6(1):119-44. English. [Crossref]  [PubMed]
  17. Garnier L. Modifications EEG produites par la distension gastrique chez le chat [EEG modifications produced by gastric distension in cats]. C R Seances Soc Biol Fil. 1968;162(12):2164-8. French.
  18. Bridgers SL, Spencer SS, Spencer DD, Sasaki CT. A cerebral effect of carotid sinus stimulation. Observation during intraoperative electroencephalographic monitoring. Arch Neurol. 1985;42(6):574-7. [Crossref]  [PubMed]
  19. Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp Neurol. 1966;16(1):36-49. [Crossref]  [PubMed]
  20. Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: neurographic correlates of induced EEG synchronization and desynchronization. Brain Res. 1967;5(2):236-49. [Crossref]  [PubMed]
  21. Hammond EJ, Uthman BM, Reid SA, Wilder BJ. Electrophysiological studies of cervical vagus nerve stimulation in humans: I. EEG effects. Epilepsia. 1992;33(6):1013-20. [Crossref]  [PubMed]
  22. Hammond EJ, Uthman BM, Reid SA, Wilder BJ. Electrophysiologic studies of cervical vagus nerve stimulation in humans: II. Evoked potentials. Epilepsia. 1992;33(6):1021-8. [Crossref]  [PubMed]
  23. Yarımoğlu ŞI. Stroop etkisinde seçici dikkat ve dikkat eksikliği-EEG frekans bantları [Yüksek Lisans Tezi]. İstanbul: Üsküdar Üniversitesi Sağlık Bilimler Enstitüsü; 2020. Erişim tarihi: 22 Aralık 2023. Erişim linki:i [Link]
  24. Molaee-Ardekani B, Senhadji L, Shamsollahi MB, Wodey E, Vosoughi-Vahdat B. Delta waves differently modulate high frequency components of EEG oscillations in various unconsciousness levels. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1294-7. [Crossref]  [PubMed]  [PMC]
  25. Liwluck P, Sittiprapaporn P. Effect of Pulse electromagnetic field therapy to brainwave on the Quantum Resonance System. In 2017 International Conference on Digital Arts, Media and Technology (ICDAMT); 2017. p.352-5. [Crossref]
  26. Nishifuji S, Sato M, Maino D, Tanaka S. Effect of acoustic stimuli and mental task on alpha, beta and gamma rhythms in brain wave. Proceedings of SICE Annual Conference. 2010;2010:1548-54.
  27. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007;53(1):63-88. [Crossref]  [PubMed]
  28. Bal F. Beyin Dalgalarının Depresyon Üzerindeki Etkisinin İncelenmesi. Humanistic Perspective, 2020;2(3): 252-70. [Crossref]
  29. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005;116(12):2719-33. [Crossref]  [PubMed]
  30. Silvani A, Calandra-Buonaura G, Dampney RA, Cortelli P. Brain-heart interactions: physiology and clinical implications. Philos Trans A Math Phys Eng Sci. 2016;374(2067):20150181. [Crossref]  [PubMed]
  31. Cakmak YO. Concerning Auricular Vagal Nerve Stimulation: Occult Neural Networks. Front Hum Neurosci. 2019;13:421. [Crossref]  [PubMed]  [PMC]
  32. Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, et al. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci. 2019;13:854. [Crossref]  [PubMed]  [PMC]
  33. Ricci L, Croce P, Lanzone J, Boscarino M, Zappasodi F, Tombini M, et al. Transcutaneous Vagus Nerve Stimulation Modulates EEG Microstates and Delta Activity in Healthy Subjects. Brain Sci. 2020;10(10):668. [Crossref]  [PubMed]  [PMC]
  34. Thayer JF, Ahs F, Fredrikson M, Sollers JJ 3rd, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36(2):747-56. [Crossref]  [PubMed]
  35. Patron E, Mennella R, Messerotti Benvenuti S, Thayer JF. The frontal cortex is a heart-brake: Reduction in delta oscillations is associated with heart rate deceleration. Neuroimage. 2019;188:403-10. [Crossref]  [PubMed]
  36. Keute M, Machetanz K, Berelidze L, Guggenberger R, Gharabaghi A. Neuro-cardiac coupling predicts transcutaneous auricular vagus nerve stimulation effects. Brain Stimul. 2021;14(2):209-16. [Crossref]  [PubMed]
  37. Konakoğlu G, Özden AV, Solmaz H, Bildik C. The effect of auricular vagus nerve stimulation on electroencephalography and electromyography measurements in healthy persons. Front Physiol. 2023;14:1215757. [Crossref]  [PubMed]  [PMC]
  38. Hamer HM, Bauer S. Lessons learned from transcutaneous vagus nerve stimulation (tVNS). Epilepsy Res. 2019;153:83-4. [Crossref]  [PubMed]
  39. Conway CR, Chibnall JT, Gebara MA, Price JL, Snyder AZ, Mintun MA, et al. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression. Brain Stimul. 2013;6(5):788-97. [Crossref]  [PubMed]  [PMC]
  40. Kibleur A, Pellissier S, Sinniger V, Robert J, Gronlier E, Clarençon D, et al. Electroencephalographic correlates of low-frequency vagus nerve stimulation therapy for Crohn's disease. Clin Neurophysiol. 2018;129(5):1041-6. [Crossref]  [PubMed]
  41. Yüksel M, Ayaş Ş, Cabıoğlu MT, Yılmaz D, Cabıoğlu C. Quantitative Data for Transcutaneous Electrical Nerve Stimulation and Acupuncture Effectiveness in Treatment of Fibromyalgia Syndrome. Evid Based Complement Alternat Med. 2019;2019:9684649. [Crossref]  [PubMed]  [PMC]