ACOUSTIC REFLEXES
Pınar Atabey
Yüksek İhtisas University, Faculty of Medicine, Medical Park Batıkent Hospital, Department of Ear Nose Throat and Head Neck Surgery, Ankara, Türkiye
Atabey P. Acoustic Reflexes. In: Duman T, editor. Reflexes The Codes of Neurology. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.193-211.
ABSTRACT
Middle Ear Muscles (MEM) and Reflexes the tensor tympani and stapedius are distinct muscles located in the middle ear, attaching to the malleus and stapes bones, respectively. The middle ear muscle (MEM) reflexes, named after these muscles, represent one of the two major systems within the auditory pathway. In humans, the stapedius muscle contracts in response to intense low-frequency acoustic stimuli, increasing the impedance of the middle ear and reducing the intensity of sound energy transmitted to the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (e.g., chewing, swallowing) and non-auditory stimuli. MEM reflex pathways involve the transmission of sound through the cochlea, culminating in an action potential conveyed to the cochlear nucleus in the brainstem. unidentified interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motor neurons located elsewhere in the brainstem. These motor neurons provide efferent innervation to the MEMs. Acoustic Startle Reflex (ASR) The early component of the ASR represents the fastest response of the fear system, with onset latencies ranging between 20 and 120 milliseconds. It is mediated by the caudal brainstem and exhibits a fixed rostro-caudal recruitment pattern. The amygdala modulates the reflex, which is heightened in anxiety disorders. When a low-salience stimulus from any sensory modality (auditory, visual, tactile) precedes an unexpected startle-like stimulus, the startle motor response becomes less pronounced or may even be suppressed entirely. Olivocochlear Efferent System Olivocochlear efferents enable the central auditory system to regulate cochlear unction during active and passive listening. Although many aspects of the efferent anatomy, physiology, and function are wellcharacterized, some remain controversial. The auditory efferent system originates in the auditory cortex, projecting to the medial geniculate body (MgB), inferior colliculus (IC), cochlear nucleus (CN), and superior olivary complex (SOC) before reaching the cochlea via olivocochlear (OC) fibers. Cochleopalpebral Reflex (CP-R) The CP-R involves an involuntary blink resulting from the contraction of the orbicularis oculi muscle in response to high-intensity sounds. It represents the initial phase of auditory behavioral observation in neonates and infants. however, clinical examination of the CP-R in neonates is rarely used today, having been replaced by neurophysiological hearing tests.
Keywords: Stapedius reflex; Tensor tymoani syndrome; Acoustic startle reflex; Olivocochlear efferents; Cochleopalpabral reflex
Kaynak Göster
Referanslar
- Moller AR. Hearing: Anatomy, physiology and disorders of the auditory system. St. Louis, MO: Academic Press. 2006. [Crossref] [PubMed]
- Dammeijer PF, van Dijk P, Manni JJ, van Mameren H. Stapedius muscle fiber characterization during postnatal development in the rat. Hear Res. 2006;219(1-2):48-55. [Crossref] [PubMed]
- Neergaard EB, Andersen HC, Hansen CC, Jepsen O. Experimental studies on sound transmission in the human ear. III influence of the stapedius and tensor tympani muscles. Acta Oto-Laryngol. 1964;57:280-6. [Crossref] [PubMed]
- Lyon MJ, Malmgren LT. Muscle fiber types in the cat middle ear muscles. II. Tensor Tympani. Arch Otolaryngol. 1988;114:404-9. [Crossref] [PubMed]
- Chien W, Lee DJ. Physiology of the auditory brainstem. In: Flint PW, Cummings CW, Schuller DE, Thomas JR, editors. Otolaryngology: Head and neck surgery. 5th ed. Amsterdam, Netherlands: Elsevier Health Sciences. 2009:1838-49. [Crossref] [PubMed]
- Metz O. Threshold of reflex contractions of muscles of middle ear and recruitment of loudness. Acta Oto-Laryngol. 1952;55:536-43. [Crossref] [PubMed]
- Lilly DJ. Acoustic impedance at the tympanic membrane. In: Katz J, editor. Handbook of clinical audiology. Baltimore, MD: Williams & Wilkins. 1972:434-69.
- Lee DJ, Brown MC, Benson TE. Synaptic terminals on middle ear muscle motoneurons: Vesicle morphometry. Assoc Res Otolaryngol Abstracts. 2009;640. [Crossref] [PubMed]
- Girardet R. Contribution to the study of the innervation of the tensor tympani. Arch Anat Histol Embryol Normales Expérimentales. 1960;43:121-64. [Crossref]
- Jerger J, Harford E, Clemis J. Studies in impedance audiometry III. Middle ear disorders. Arch Otolaryngol. 1974;99:165-71. [Crossref] [PubMed]
- Jerger J, Jerger S. Clinical validity of central auditory tests. Scand Audiol. 1975;4:147-63. [Crossref] [PubMed]
- Klockhoff I, Anderson H. Reflex activity in the tensor tympani muscle recorded in man: Preliminary report. Acta Oto-Laryngol. 1960;51:184-8. [Crossref] [PubMed]
- Neergaard EB, Andersen HC, Hansen CC, Jepsen O. Experimental studies on sound transmission in the human ear. III influence of the stapedius and tensor tympani muscles. Acta Oto-Laryngol. 1964;57:280-6. [Crossref] [PubMed]
- Djupesland G. Akustik ve akustik olmayan uyarımla ortaya çıkan orta kulak kası refleksleri. Acta Oto-Laryngol Suppl. 1964;188:287-92.
- Aron M, Floyd D, Bance M. Voluntary eardrum movement: a marker for tensor tympani contraction? Otol Neurotol. 2015;36(2):373-81. [Crossref] [PubMed]
- Desmond MM, et al. The clinical behavior of the newly born. I. The term baby. J Pediatr. 1963;62:307-16. [Crossref] [PubMed]
- Bench J, et al. A comparison between the neonatal soundevoked startle response and the head-drop (Moro) reflex. Dev Med Child Neurol. 1972;14(2):177-81. [Crossref] [PubMed]
- Rönnqvist L. A critical examination of the Moro response in newborn infants. Neuropsychologia. 1995;33(6):679-89. [Crossref] [PubMed]
- Futagi Y, Toribe Y, Suzuki Y. The grasp reflex and Moro reflex in infants: Hierarchy of primitive reflex responses. Int J Pediatr. 2012;2012:191562. [Crossref] [PubMed]
- Dubowitz L, et al. The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev. 2005;11(1):52-60.21. [Crossref] [PubMed]
- Landis C, Hunt W. The Startle Pattern. New York, NY, USA: Farrar & Rinehart; 1939.
- Alvarado Ruiz GR, Martínez Vázquez RI, Solís Chan M, Plaza M, Gómez Ramírez DB. Los reflejos primitivos en el diagnóstico clínico de neonatos y lactantes. Rev Cienc Clín. 2009;9:15-26.
- Ford JM, Roth WT, Isaacks BG, White PM, Hood SH, Pfefferbaum A. Elderly men and women are less responsive to startling noises: N1, P3 and blink evidence. Biol Psychol. 1995;39:57-80. [Crossref] [PubMed]
- Varty GB, Hauger RL, Geyer MA. Aging effects on the startle response and startle plasticity in Fisher F344 rats. Neurobiol Aging. 1998;19:243-51. [Crossref] [PubMed]
- Lee Y, López DE, Meloni EG, Davis M. A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci. 1996;16:3775-89. [Crossref] [PubMed]
- Gómez-Nieto R, Horta-Júnior JdAC, Castellano O, Millian-Morell L, Rubio ME, López DE. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Mol Neurosci. 2014;8:216. [Crossref] [PubMed]
- -Kofler M, Müller J, Reggiani L, Valls-Solé J. Influence of age on auditory startle responses in humans. Neurosci Lett. 2001;307:65–8. [Crossref] [PubMed]
- -Vaillancourt C, Cyr M, Rochford J, Boksa P, Di Paolo T. Effects of ovariectomy and estradiol on acoustic startle responses in rats. Pharmacol Biochem Behav. 2002;74:103-9. [Crossref] [PubMed]
- -Blanch A, Balada F, Aluja A. Habituation in acoustic startle reflex: Individual differences in personality. Int JPsychophysiol. 2014;91:232-9. [Crossref] [PubMed]
- Swerdlow NR, Eastvold A, Karban B, Ploum Y, Stephany N, Geyer MA, et al. Dopamine agonist effects on startle and sensorimotor gating in normal male subjects: Time course studies. Psychopharmacology. 2002;161:189–201. [Crossref] [PubMed]
- Harris AC, Gewirtz JC. Elevated startle during withdrawal from acute morphine: A model of opiate withdrawal and anxiety. Psychopharmacology. 2004;171:140-7. [Crossref] [PubMed]
- Bell RL, Rodd ZA, Hsu CC, Lumeng L, Murphy JM, McBride WJ. Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats. Pharmacol Biochem Behav. 2003;75:163-71. [Crossref] [PubMed]
- Davis M. Cocaine: Excitatory effects on sensorimotor reactivity measured with acoustic startle. Psychopharmacology. 1985;86:31-6. [Crossref] [PubMed]
- Farid M, Martinez ZA, Geyer MA, Swerdlow NR. Regulation of sensorimotor gating of the startle reflex by serotonin 2A receptors: Ontogeny and strain differences. Neuropsychopharmacology. 2000;23:623-32. [Crossref] [PubMed]
- Abduljawad KAJ, Langley RW, Bradshaw CM, Szabadi E. Effects of clonidine and diazepam on prepulse inhibition of the acoustic startle response and the N1/P2 auditory evoked potential in man. J Psychopharmacol.2001;15:237–42. [Crossref] [PubMed]
- Hutchison KE, Niaura R, Swift R. The effects of smoking high nicotine cigarettes on prepulse inhibition, startle latency, and subjective responses. Psychopharmacology (Berl). 2000;150:244-52. [Crossref] [PubMed]
- Rasmussen DD, Crites NJ, Burke BL. Acoustic startle amplitude predicts vulnerability to develop post-traumatic stress hyper-responsivity and associated plasma corticosterone changes in rats. Psychoneuroendocrinology. 2008;33:282-91. [Crossref] [PubMed]
- Pantoni MM, Herrera GM, Van Alstyne KR, Anagnostaras SG. Quantifying the acoustic startle response in mice using standard digital video. Front Behav Neurosci. 2020;14:83. [Crossref] [PubMed]
- Balogiannis G, Stachtea X, Yova D, Papageorgiou C. A novel optical non-intrusive method for measuring acoustic startle reflex in humans. Physiol Meas. 2020;41(6):065003. [Crossref] [PubMed]
- Gowen CL, Khwaounjoo P, Cakmak YO. EMG-free monitorization of the acoustic startle reflex with a mobile phone: implications of sound parameters with posture related responses. Sensors (Basel). 2020;20(21):5996. [Crossref] [PubMed]
- Diefendorf AO. Assessment of hearing loss in children. In: Katz J, editor. Handbook of Clinical Audiology. 7th ed. Wolters Kluwer; 2015. p. 545-62.
- Azzopardi E, Louttit AG, DeOliveira C, Laviolette SR, Schmid S. The role of cholinergic midbrain neurons in startle and prepulse inhibition. J Neurosci. 2018;38(41):8798–808. [Crossref] [PubMed]
- Ludewig S, Ludewig K, Geyer MA, Hell D, Vollenweider FX. Prepulse inhibition deficits in patients with panic disorder. Depress Anxiety. 2002;15:55-60. [Crossref] [PubMed]
- Comasco E, Gulinello M, Hellgren C, Skalkidou A, Sylvén S, Sundström-Poromaa I. Sleep duration, depression, and oxytocinergic genotype influence prepulse inhibition of the startle reflex in postpartum women. Eur Neuropsychopharmacol. 2016;26:767-76. [Crossref] [PubMed]
- Pereira-Figueiredo I, Castellano O, Riolobos AS, Ferreira-Dias G, López DE, Sancho C. Long-term sertraline intake reverses the behavioral changes induced by prenatal stress in rats in a sex-dependent way. Front Behav Neurosci. 2017;11:99. [Crossref] [PubMed]
- Schmajuk NA, Larrauri JA, De La Casa LG, Levin EE. Attenuation of auditory startle and prepulse inhibition by unexpected changes in ambient illumination through dopaminergic mechanisms. Behav Brain Res. 2009;197:251-61. [Crossref] [PubMed]
- Breedh J, Comasco E, Hellgren C, Papadopoulos FC, Skalkidou A, Poromaa IS. Hypothalamic-pituitary-adrenal axis responsiveness, startle response, and sensorimotor gating in late pregnancy. Psychoneuroendocrinology. 2019;106:1-8. [Crossref] [PubMed]
- Bannbers E, Kask K, Wikstrom J, Sundström-Poromaa I. Lower levels of prepulse inhibition in luteal phase cycling women in comparison with postmenopausal women. Psychoneuroendocrinology. 2010;35:422-9. [Crossref] [PubMed]
- Molina V, Cortés B, Pérez J, Martín C, Villa R, López DE, et al. No association between prepulse inhibition of the startle reflex and neuropsychological deficit in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2010;260:609-15. [Crossref] [PubMed]
- Hormigo S, Cardoso A, Sancho C, López DE, Moreno C. Associations between neural sensorimotor gating mechanisms and athletic performance in a variety of physical conditioning tests. Eur J Appl Physiol. 2019;119:921-32. [Crossref] [PubMed]
- Swerdlow NR, Braff DL, Geyer MA. Sensorimotor gating of the startle reflex: What we said 25 years ago, what has happened since then, and what comes next. J Psychopharmacol. 2016;30:1072-81. [Crossref] [PubMed]
- Kumari V, Soni W, Sharma T. Normalization of information processing deficits in schizophrenia. Am J Psychiatry. 1999;156:1046-51. [Crossref] [PubMed]
- Brown JS, Kalish HI, Farber IE. Conditioned fear as revealed by magnitude of startle response to an auditory stimulus.JExpPsychol.1951;41:317-28 . [Crossref] [PubMed]
- Lang PJ, Bradley MM, Cuthbert B. Emotion, attention, and the startle reflex. Psychol Rev. 1990;97:377-95. [Crossref] [PubMed]
- Schmid A, Koch M, Schnitzler H. Conditioned pleasure attenuates the startle response in rats. Neurobiol Learn Mem. 1995;64:1-3. [Crossref] [PubMed]
- Miserendino MJD, Davis M. NMDA and non-NMDA antagonists infused into the nucleus reticularis pontis caudalis depress the acoustic startle reflex. Brain Res. 1993;623:215-22. [Crossref] [PubMed]
- Dehmel S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci. 2012;6:42. [Crossref] [PubMed]
- Hayes SH, Radziwon KE, Stolzberg DJ, Salvi RJ. Behavioral models of tinnitus and hyperacusis in animals. FrontNeurol. 2014;5:179. [Crossref] [PubMed]
- Turner JG, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM. Gap detection deficits in rats with tinnitus: A potential novel screening tool. Behav Neurosci. 2006;120:188-95. [Crossref] [PubMed]
- Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? JNeurophysiol. 2014;111:552-64. [Crossref] [PubMed]
- Wilson CA, Berger JI, de Boer J, Sereda M, Palmer AR, Hall DA, et al. Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs. Hear Res. 2019;374:13-23. [Crossref] [PubMed]
- Valls-Solé J. Assessment of excitability in brainstem circuits mediating the blink reflex and the startle reaction. Clin Neurophysiol. 2012;123:13-20. [Crossref] [PubMed]
- Edinger L, Fisher B. Ein Mensch ohne Grohirn. Pflügers Arch Gesamte Physiol Menschen Tiere. 1913;152:535-62. [Crossref] [PubMed]
- Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985;227(4683):194-6. [Crossref] [PubMed]
- Gates GA, Mills JH. Presbycusis. Lancet. 2005;366:1111-20. [Crossref] [PubMed]
- Guinan JJ. Physiology of the olivocochlear efferents. In: Dallos P, Popper AN, Fay RR, editors. The Cochlea. New York: Springer. 1996:435-502. [Crossref] [PubMed]
- Guinan JJ Jr. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear. 2006;27(6):589-607. [Crossref] [PubMed]
- Rajan R. Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound. J Neurosci. 2000;20(17):6684–93. [Crossref] [PubMed]
- Delano PH, Elgueda D, Hamame CM, Robles L. Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci. 2007;27(15):4146-53. [Crossref] [PubMed]
- Glowatzki E, Fuchs PA. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science. 2000;288(5475):2366-8. [Crossref] [PubMed]
- Liberman LD, Maison SF. Efferent feedback slows cochlear aging. J Neurosci. 2014;34(13):4599-607. [Crossref] [PubMed]
- Kawase T, Delgutte B, Liberman MC. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol. 1993;70(6):2533-49. [Crossref] [PubMed]
- Jennings SG, Ahlstrom JB, Dubno JR. Effects of age and hearing loss on overshoot. J Acoust Soc Am. 2016;140(4):2481. [Crossref] [PubMed]
- Viemeister NF, Bacon SP. Forward masking by enhanced components in harmonic complexes. J Acoust Soc Am. 1982;71(6):1502-7.7108024. [Crossref] [PubMed]
- Summerfield Q, Haggard M, Foster J, Gray S. Perceiving vowels from uniform spectra: phonetic exploration of an auditory aftereffect. Percept Psychophys. 1984;35(3):203-13. [Crossref] [PubMed]
- Oxenham AJ. Spectral contrast effects and auditory enhancement under normal and impaired hearing. Acoust Sci Technol. 2020;41(1):108-12. [Crossref] [PubMed]
- Champlin CA, McFadden D. Reductions in overshoot following intense sound exposures. J Acoust Soc Am. 1989;85(5):2005-11.2732381. [Crossref] [PubMed]
- Strickland EA, Krishnan LA. The temporal effect in listeners with mild to moderate cochlear hearing impairment. J Acoust Soc Am. 2005;118(5):3211-7. [Crossref] [PubMed]
- Bacon SP, Oxenham AJ. Psychophysical manifestations of compression: hearing-impaired listeners. In: Bacon SP, Fay RR, Popper AN, editors. Compression: From Cochlea to Cochlear Implants. New York: Springer. 2004;107-52. [Crossref]
- McFadden D, Champlin CA. Reductions in overshoot during aspirin use. J Acoust Soc Am. 1990;87(6):2634–42. [Crossref] [PubMed]
- Relkin EM, Doucet JR. Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons. Hear Res. 1991;55(2):215-22. [Crossref] [PubMed]
- Carlyon RP, White LJ. Effect of signal frequency and masker level on the frequency regions responsible for the overshoot effect. J Acoust Soc Am. 1992;91(2):1034-41. [Crossref] [PubMed]
- Fletcher M, de Boer J, Krumbholz K. Is off-frequency overshoot caused by adaptation of suppression? J Assoc Res Otolaryngol. 2015;16(2):241-53. [Crossref] [PubMed]
- Jennings SG, Sivas K, Stone C. Effects of masker envelope fluctuations on the temporal effect. J Assoc Res Otolaryngol. 2018;19(6):717-27. [Crossref] [PubMed]
- Savel S, Bacon SP. Effectiveness of narrow-band versus tonal off-frequency maskers. J Acoust Soc Am. 2003;114(1):380-5. [Crossref] [PubMed]
- Warren EH 3rd, Liberman MC. Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res. 1989;37(2):105-21. [Crossref] [PubMed]
- Strickland EA, Salloom WB, Hegland EL. Evidence for gain reduction by a precursor in an on-frequency forward masking paradigm. Acta Acust United Acust. 2018;104(5):809-12. [Crossref] [PubMed]
- Drga V, Plack CJ, Yasin I. Frequency tuning of the efferent effect on cochlear gain in humans. Adv Exp Med Biol. 2016;894:477–84. [Crossref] [PubMed]
- AL, Harrison RV, Pienkowski M, Dajani HR, Mount RJ. Dynamics of real time DPOAE contralateral suppression in chinchillas and humans. Int J Audiol. 2005;44(2):118-29. [Crossref] [PubMed]
- Roverud E, Strickland EA. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model. J Acoust Soc Am. 2014;135(3):1321-34. [Crossref] [PubMed]
- Plack CJ, Oxenham AJ, Drga V. Masking by inaudible sounds and the linearity of temporal summation. J Neurosci. 2006;26(34):8767-73. [Crossref] [PubMed]
- Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA. Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol. 2013;14(3):341-57. [Crossref] [PubMed]
- Martínez Cruz CF, Ramírez-Vargas MN, Guido-Campuzano MA, García-Alonso-Themann P. Cochleopalpebral reflex: sensitivity and specificity in the auditory screening of newborns discharged from the neonatal intensive care unit. BolMedHospInfantMex. 2021;78(4):273-8. [Crossref] [PubMed]