Acute Effects of Vagal Neuromodulation Approaches in Healthy Individuals

geleneksel tip-5-2-wos-kapak

Berkay Eren PEHLİVANOĞLUa , Alper PERÇİNb

aBahçeşehir University Faculty of Health Sciences, Deparment of Physiotherapy and Rehabilitation, İstanbul, Türkiye
bIğdır University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Iğdır, Türkiye

ABSTRACT
The acute effects of vagal neuromodulation approaches in healthy individuals play an important role in regulating the autonomic nervous system (ANS) and maintaining overall body homeostasis. The vagus nerve (VN) is the main component of the parasympathetic nervous system (PNS). Different neuromodulation techniques can produce different acute effects by modulating the activity of the VN. Vagal neuromodulation has been shown to be effective on heart rate, blood pressure and autonomic functions. The use of these approaches may have beneficial effects on stress management, mood regulation and modulation of inflammatory responses. Studies in healthy individuals show that vagal neuromodulation has rapid and transient effects, with the potential to improve autonomic balance and enhance stress coping mechanisms. Heart rate variability, pulse rate, systolic and diastolic blood pressure, respiratory rate, stress and anxiety, anti-inflammatory effects, gastrointestinal effects and autonomic reflex control can be listed as specific mechanisms that can be regulated by vagal nerve stimulation (VNS). The aim of this study is to compile the data in the literature on the applicability of the acute effects of VNS in healthy individuals and to pioneer new studies to be designed.
Keywords: Vagus nerve; vagus nerve stimulation; neural inhibitions

Referanslar

  1. Larson JS. The World Health Organization's definition of health: Social versus spiritual health. Soc Indic Res. 1996;38(2):181-92. [Crossref]
  2. Moini J, LoGalbo A, Ahangari R. Autonomic nervous system. Foundations of the Mind, Brain, and Behavioral Relationships. United Kingdom: Elsevier; 2024. p.95-113. [Crossref]
  3. Waheed W, Vizzard MA. Peripheral autonomic nervous system. Primer on the Autonomic Nervous System. United Kingdom: Elsevier; 2023. p.17-29. [Crossref]
  4. Dhananjay B, Arya B, Venkatesh NP, Sivaraman J. Heart rate variability. Advanced Methods in Biomedical Signal Processing and Analysis. United Kingdom: Elsevier; 2023. p.31-59. [Crossref]
  5. Saul JP. Beat-to-beat variations of heart rate reflect modulation of cardiac autonomic outflow. News Physiol Sci. 1990;5:32-7. [Crossref]
  6. Levy MN, Schwartz PJ. Vagal Control of the Heart: Experimental Basis and Clinical Implications. Futura Pub Co; 1994.
  7. Schwartz PJ, Priori SG. Sympathetic nervous system and cardiac arrythmias. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia: 1990. p.330-4.
  8. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043-65.
  9. De Couck M, Cserjesi R, Caers R, Zijlstra WP, Widjaja D, Wolf N, et al. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton Neurosci. 2017;203:88-96. [Crossref]  [PubMed]
  10. Iwao T, Yonemochi H, Nakagawa M, Takahashi N, Saikawa T, Ito M. Effect of constant and intermittent vagal stimulation on the heart rate and heart rate variability in rabbits. Jpn J Physiol. 2000;50(1):33-9. [Crossref]  [PubMed]
  11. Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med. 2020;10(2):a034173. [Crossref]  [PubMed]  [PMC]
  12. Mulders DM, de Vos CC, Vosman I, van Putten MJ. The effect of vagus nerve stimulation on cardiorespiratory parameters during rest and exercise. Seizure. 2015;33:24-8. [Crossref]  [PubMed]
  13. Staley R, Garcia RG, Stowell J, Sclocco R, Fisher H, Napadow V, et al. Modulatory Effects of Respiratory-Gated Auricular Vagal Nerve Stimulation on Cardiovagal Activity in Hypertension. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:2581-4. [Crossref]  [PubMed]
  14. Rao G. Diagnosis, Epidemiology, and Management of Hypertension in Children. Pediatrics. 2016;138(2):e20153616. [Crossref]  [PubMed]
  15. Bernstein D. Systemic Hypertension. In: Behrman RE, Kliegman RM. Jenson HB, eds. Nelson Textbook of Pediatrics. 18th ed. Philadelphia: WB Saunders Co; 2007. p.1592-8.
  16. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887-920. [Crossref]  [PubMed]
  17. Lurbe E, Sorof JM, Daniels SR. Clinical and research aspects of ambulatory blood pressure monitoring in children. J Pediatr. 2004;144(1):7-16. [Crossref]  [PubMed]
  18. Stas S, Appesh L, Sowers J. Metabolic safety of antihypertensive drugs: myth versus reality. Curr Hypertens Rep. 2006;8(5):403-8. [Crossref]  [PubMed]
  19. Annoni EM, Xie X, Lee SW, Libbus I, KenKnight B, Osborn J, et al. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015;3(8):e12476. [Crossref]  [PubMed]  [PMC]
  20. Gierthmuehlen M, Plachta DT. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication. Hypertens Res. 2016;39(2):79-87. [Crossref]  [PubMed]
  21. Antonino D, Teixeira AL, Maia-Lopes PM, et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: A randomized placebo-controlled trial. Brain Stimul. 2017;10(5):875-81. [Crossref]  [PubMed]
  22. Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, et al. Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Front Physiol. 2019;10:25. [Crossref]  [PubMed]  [PMC]
  23. Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS. Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients. J Gen Intern Med. 1993;8(7):354-60. [Crossref]  [PubMed]
  24. Goldhill DR, McNarry AF, Mandersloot G, McGinley A. A physiologically-based early warning score for ward patients: the association between score and outcome. Anaesthesia. 2005;60(6):547-53. [Crossref]  [PubMed]
  25. Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48-55. [Crossref]  [PubMed]
  26. Malow BA, Edwards J, Marzec M, Sagher O, Fromes G. Effects of vagus nerve stimulation on respiration during sleep: a pilot study. Neurology. 2000;55(10):1450-4. [Crossref]  [PubMed]
  27. Peña DF, Engineer ND, McIntyre CK. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry. 2013;73(11):1071-7. [Crossref]  [PubMed]  [PMC]
  28. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry. 2007;12(2):120-50. [Crossref]  [PubMed]
  29. Clem RL, Huganir RL. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science. 2010;330(6007):1108-12. [Crossref]  [PubMed]  [PMC]
  30. Friedman BH. An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol Psychol. 2007;74(2):185-99. [Crossref]  [PubMed]
  31. Krahl SE, Clark KB, Smith DC, Browning RA. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia. 1998;39(7):709-14. [Crossref]  [PubMed]
  32. Smith MA, Makino S, Altemus M, Michelson D, Hong SK, Kvetnansky R, et al. Stress and antidepressants differentially regulate neurotrophin 3 mRNA expression in the locus coeruleus. Proc Natl Acad Sci U S A. 1995;92(19):8788-92. [Crossref]  [PubMed]  [PMC]
  33. Hirata H, Aston-Jones G. A novel long-latency response of locus coeruleus neurons to noxious stimuli: mediation by peripheral C-fibers. J Neurophysiol. 1994;71(5):1752-61. [Crossref]  [PubMed]
  34. Kapur S, Austin MC, Underwood MD, Arango V, Mann JJ. Electroconvulsive shock increases tyrosine hydroxylase and neuropeptide Y gene expression in the locus coeruleus. Brain Res Mol Brain Res. 1993;18(1-2):121-6. [Crossref]  [PubMed]
  35. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-90. [Crossref]  [PubMed]  [PMC]
  36. Olofsson PS, Tracey KJ. Bioelectronic medicine: technology targeting molecular mechanisms for therapy. J Intern Med. 2017;282(1):3-4. [Crossref]  [PubMed]  [PMC]
  37. Bonaz B, Bazin T, Pellissier S. The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci. 2018;12:49. [Crossref]  [PubMed]  [PMC]
  38. Bonaz B, Sinniger V, Pellissier S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med. 2019;9(8):a034199. [Crossref]  [PubMed]  [PMC]
  39. Jänig W. The integrative action of the autonomic nervous system: neurobiology of homeostasis. New York: Cambridge University Press; 2022. [Crossref]
  40. McDougall SJ, Münzberg H, Derbenev AV, Zsombok A. Central control of autonomic functions in health and disease. Front Neurosci. 2015;8:440. [Crossref]  [PubMed]  [PMC]