Adoptive T-Cell Therapy: Engineering T-Cell Receptors

Pınar ATACA ATİLLAa
aFred Hutchinson Cancer Research Center, Division of Translational Science and Therapeutics, Seattle, WA, USA

Ataca Atilla P. Adoptive T-Cell therapy: Engineering T-Cell receptors. Sunguroğlu A, ed. Current Approaches in Cancer Immunotherapy. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.29-38.

ABSTRACT
T cells are major cells for immune mediated responses. Adoptive T cell therapies are ”living drugs” comprise a broad range of approaches including the use of modified and non-modified strategies against relapsed/refractory tumors. Starting from 1980’s remarkable improvements in molecular biology, immunology, gene editing, synthetic biology and computational science provide new tools for engineering T cell receptors (TCRs). Exogenous TCRs, soluble bispecific TCRs, TCR mimics, T cell antigen coupler (TAC), T cell receptor fusion construct (TRuC), synthetic TCR antigen receptor (STAR) and HLA-independent TCR (HIT) have been emerged in preclinical studies. Chimeric antigen receptor (CAR) T cells represent a unique phenomenon in synthetic biology. Although clinical accessibility is gradually expanding, these novel therapies are still in infancy, and much needs to be improved.

Keywords: T cell receptors; engineering; chimeric antigen receptor T cells

Referanslar

  1. Gorentla BK, Zhong XP. T cell Receptor Signal Transduction in T lymphocytes. J Clin Cell Immunol. 2012;2012(Suppl 12):5.
  2. Zúñiga-Pflücker JC. T-cell development made simple. Nat Rev Immunol. 2004;4(1):67-72. [Crossref]
  3. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745-63. [Crossref]
  4. Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010;2(4):a005140. [Crossref]  [PubMed]  [PMC]
  5. Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW. alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity. 1997;6(1):1-11.
  6. Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med. 2018;16(1):3. [Crossref]  [PubMed]  [PMC]
  7. van Boxel GI, Holmes S, Fugger L, Jones EY. An alternative conformation of the T-cell receptor alpha constant region. J Mol Biol. 2010;400(4):828-37. [Crossref]  [PubMed]  [PMC]
  8. Hedrick SM, Cohen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308(5955):149-53. [Crossref]
  9. Sušac L, Vuong MT, Thomas C, von Bülow S, O'Brien-Ball C, Santos AM, et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell. 2022;185(17):3201-3213.e19. [Crossref]  [PubMed]  [PMC]
  10. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature. 1988;334(6181):395-402. [Crossref]
  11. Dong D, Zheng L, Lin J, Zhang B, Zhu Y, Li N, Xie S, Wang Y, Gao N, Huang Z. Structural basis of assembly of the human T cell receptor-CD3 complex. Nature. 2019;573(7775):546-52. [Crossref]
  12. Tikhonova AN, Van Laethem F, Hanada K, Lu J, Pobezinsky LA, Hong C, et al. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity. 2012;36(1):79-91. [Crossref]  [PubMed]  [PMC]
  13. Leahy DJ. A structural view of CD4 and CD8. FASEB J. 1995;9(1):17-25. [Crossref]
  14. Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, et al. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol. 2017;8:292. [Crossref]  [PubMed]  [PMC]
  15. Samelson LE. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol. 2002;20:371-94. [Crossref]
  16. van Oers NS, Killeen N, Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med. 1996;183(3):1053-62. [Crossref]  [PubMed]  [PMC]
  17. Weiss A, Littman DR. Signal transduction by lymphocyte antigen receptors. Cell. 1994;76(2):263-74. [Crossref]
  18. Bu JY, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci U S A. 1995;92(11):5106-10. [Crossref]  [PubMed]  [PMC]
  19. Krystal GW, DeBerry CS, Linnekin D, Litz J. Lck associates with and is activated by Kit in a small cell lung cancer cell line: inhibition of SCF-mediated growth by the Src family kinase inhibitor PP1. Cancer Res. 1998;58:4660-6.
  20. Laugel B, van den Berg HA, Gostick E, Cole DK, Wooldridge L, Boulter J, et al. Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem. 2007;282(33):23799-810. [Crossref]
  21. Kim PW, Sun ZJ, Blacklow SC, Wagner G, Eck MJ. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 2003;301:1725–8. [Crossref]
  22. Isakov N, Wange RL, Burgess WH, Watts JD, Aeversold R, Samelson LE. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine based activation motifs with varying affinity. J Exp Med. 1995;181:375–80. [Crossref]  [PubMed]  [PMC]
  23. Wang H, Kadlecek TA, Au-Yeung BB, Goodfellow HE, HSU LY, Freedman TS et al. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2010;2:a002279. [Crossref]  [PubMed]  [PMC]
  24. Nagarsheth, NB, Norberg SM, Sinkoe AL, Adhikary S, Meyer TJ, Lack JB, et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 2021;27:419–25. [Crossref]  [PubMed]  [PMC]
  25. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122:863–71. [Crossref]  [PubMed]  [PMC]
  26. Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 2022;609:369–74. [Crossref]  [PubMed]  [PMC]
  27. Eyquem J., Mansilla-Soto J, Giavridis T, Stegen SJ, Hamieh M, Cunanan KM, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017:543:113-7. [Crossref]  [PubMed]  [PMC]
  28. Fraietta, JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature. 2018;558:307–12. [Crossref]  [PubMed]  [PMC]
  29. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA. Morgan RA. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006;66:8878–86. [Crossref]  [PubMed]  [PMC]
  30. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565-70, 1p following 570. [Crossref]
  31. Provasi E, Genovese P, Lombardo A, Magnani Z, liu PQ, Reik A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med. 2012;18:807–15. [Crossref]  [PubMed]  [PMC]
  32. Berdien, B, Mock, U, Atanackovic, D, Fehse, B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 2014;21:539–48. [Crossref]
  33. Nahmad, AD, Reuveni E, Goldschmidt E, Tenne T, Liberman M, Horovitz-Fried M, et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 2022;40:1807–13. [Crossref]  [PubMed]  [PMC]
  34. Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19:770–88. [Crossref]  [PubMed]  [PMC]
  35. Poole A, Karuppiah V, Hartt A, Haidar JN, Moureau S, Dobrzycki T, et al. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen. Nat. Commun. 2022;13:5333. [Crossref]  [PubMed]  [PMC]
  36. Zhao Y, Bennett AD, Zheng Z, Wang QJ, Robbins PF, Yu LY, et al. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J Immunol. 2007;179(9):5845-54. [Crossref]  [PubMed]  [PMC]
  37. Dao T, Pankov D, Scott A, Korontsvit T, Zakhaleva V, Xu Y, et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat Biotechnol. 2015;33:1079-86. [Crossref]  [PubMed]  [PMC]
  38. Hoogenboom, HR, Bruiine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. Antibody phage display technology and its applications. Immunotechnology. 1998;4:1–20. [Crossref]
  39. Holland C, Crean RM, Pentier JM, Wet B, Lloyd A, Srikannatshasan V, et al. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J Clin Invest. 2020;130:2673-88. [Crossref]  [PubMed]  [PMC]
  40. Yarmarkovich M, Marshall QF, Warrington JM, Premaratne R, Farrel A, Groff D, et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature. 2021;599:477-84.
  41. Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR affinity influences T-B interactions and B cell development in secondary lymphoid organs. Front Immuol. 2021;12:1–13. [Crossref]  [PubMed]  [PMC]
  42. Schmid DA, Irving MB, Posevitz V, Hebeisen, Fejfar AP, Sarria JC et al. Evidence for a TCR affinity threshold delimiting maximal CD8 T cell function. J Immunol. 2010;184:4936–46. [Crossref]
  43. Ataca P, Arslan O. Chimeric Antigen Receptor T Cell Therapy in Hematology. Turk J Haematol. 2015;32(4):285-94. [Crossref]  [PubMed]  [PMC]
  44. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop H, Rooney CM, et al. Fine-tuning the CAR spacer improves T-cell potency. Onco Targets Ther. 2016;5:e1253656. [Crossref]  [PubMed]  [PMC]
  45. Fujiwara K, Tsunei A, Kusabuka H, Ogaki E, Tachibana M, Okada N. Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold. Cell. 2020;9:1182. [Crossref]  [PubMed]  [PMC]
  46. Brocker T, Karjalainen K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J ExpMed. 1995;181:1653–9. [Crossref]  [PubMed]  [PMC]
  47. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 1998;161:2791-97. [Crossref]
  48. Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CART cells. Immunity. 2016;44:380–90. [Crossref]
  49. HombachAA,Heiders J, FoppeM, Chmielewski M, Abken H.OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Onco Targets Ther. 2012;1:458-66. [Crossref]  [PubMed]  [PMC]
  50. Golubovskaya VM, Berahovich R, Xu Q, Zhou H, Xu S, Guan J, et al. GITR domain inside CAR co-stimulates activity of CAR-T cells against cancer. Front Biosci. 2018;23:2245-54. [Crossref]
  51. Guedan S, Posey AD Jr, Shaw C, Wing A, Da Tong, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight. 2018;3:e96976. [Crossref]  [PubMed]  [PMC]
  52. Schubert M, Schmitt A, Neuber B, Krauss AH, Kunz A, Wang L, et al. Third-generation CAR T cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CART cells in treated patients. Blood. 2019;134:51–53. [Crossref]
  53. Hawkins ER, D'Souza RR, Klampatsa A. Armored CAR T-cells: the next chapter in T-cell cancer immunotherapy. Biol Theory. 2021;15:95–105. [Crossref]  [PubMed]  [PMC]
  54. Chmielewski M,Abken H. TRUCKs, the fourth generation CART cells: current developments and clinical translation. Adv Cell Gene Ther. 2020;3:e84.
  55. Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang CH, Saso K, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature Med. 2018;24:352–9. [Crossref]  [PubMed]  [PMC]
  56. Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature. 2023, 614:635-48. [Crossref]
  57. Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. Adv Sci (Weinh) 2023:e2303215.
  58. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017 12, 813–20. [Crossref]  [PubMed]  [PMC]
  59. Bozza M, De Roia A, Correia MP, Berger A, Tuch A, Schmidt A, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv. 2021;7(16):eabf1333. [Crossref]  [PubMed]  [PMC]
  60. Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci. Signal. 2021;14, eabe2606. [Crossref]  [PubMed]  [PMC]
  61. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 2020;10:702–23. [Crossref]  [PubMed]  [PMC]
  62. Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, et al. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 2022;40(1):53-69.e9.
  63. Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, et al. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. J Immunother Cancer. 2020;8(2):e001229. [Crossref]  [PubMed]  [PMC]
  64. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, et al. TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy.Mol Ther Nucleic Acids (2013) 2(7):e105. [Crossref]  [PubMed]  [PMC]
  65. Atilla PA, McKenna MK, Watanabe N, Mamonkin M, Brenner MK, Atilla E. Combinatorial antigen targeting strategies for acute leukemia: application in myeloid malignancy. Cytotherapy. 2022;24(3):282-90. [Crossref]  [PubMed]  [PMC]
  66. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS,et al. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. 2016;164(4):770–9. [Crossref]  [PubMed]  [PMC]
  67. Helsen, CW, Hammill JA, Lau VWC, Mwawasi KA, Afsahi A, Bezverbnaya K, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 2018;9:3049. [Crossref]  [PubMed]  [PMC]
  68. Baeuerle, PA, Ding J, Patel E, Thorausch N, Horton H, Gierut J, et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 2019;10:2087. [Crossref]  [PubMed]  [PMC]
  69. Liu Y, Liu G, Wang J, Zheng Z, Jia L, Rui W, et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 2021;13:eabb5191. [Crossref]
  70. Mansilla-Soto, J, Eyquem J, Haubner S, Hamieh M, Feucht J, Paillon N, et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat Med. 2022;28:345–52. [Crossref]  [PubMed]  [PMC]
  71. Roth T L. Li JP, Blaeschke F, Nies JF, Apathy R, Mowery C, et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell. 2020;181:728–44.e21. [Crossref]  [PubMed]  [PMC]
  72. Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, Le PM,. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature. 2021;596:119–25. [Crossref]  [PubMed]  [PMC]
  73. Duval L, Schmidt H, Kaltoft K, Fode K, Jensen JJ, Sorensen ST,. et al. Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma.Clin. Cancer Res. 2006;12:1229–36. [Crossref]
  74. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9. [Crossref]  [PubMed]  [PMC]
  75. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 2011:19,620–6. [Crossref]  [PubMed]  [PMC]
  76. Robbins PF, Kassim SH, Tran TL, Crystan JS, Moran RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response.Clin. Cancer Res. 2015:21:1019–27ç [Crossref]  [PubMed]  [PMC]
  77. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013:36:133–51. [Crossref]  [PubMed]  [PMC]
  78. Lu YC, Parker LL, Lu T, Zheng Z, Toomey Ma, White DE, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 2017;35:3322-9. [Crossref]  [PubMed]  [PMC]
  79. Wermke M, Tsimbreiodu AM, Mohammed A, Mokler-A, Satelli A, Reinhardt C, et al. Safety and anti-tumor activity of TCR-engineered autologous, PRAME-directed T cells across multiple advanced solid cancers at low doses—clinical update on the ACTengine. IMA203 trial. J. Immunother. Cancer 2021;9: A100.
  80. Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375:2255–62. [Crossref]  [PubMed]  [PMC]
  81. Sugiyama H. WT1 (Wilms’ tumor gene 1): biology and cancer Immunotherapy. Jpn J Clin Oncol. 2010;40:377–87.
  82. Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M,. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 2021;385:1196–206. [Crossref]
  83. Atilla PA, Atilla E. Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies. Transl Oncol. 2022;22:101459. [Crossref]  [PubMed]  [PMC]
  84. Barrett DM, Liu X, Jiang S, June CH, Grupp SA, Zhao Y. Regimen-Specific Effects of RNA-Modified Chimeric Antigen Receptor T Cells in Mice with Advanced Leukemia. Hum. Gene Ther. 2013;24:717–27. [Crossref]  [PubMed]  [PMC]
  85. Maloney DG. CAR-T cells. Clin. Lymphoma Myeloma Leuk. 2019:S100–S101. [Crossref]
  86. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439-48.
  87. Westin JR, Kersten MJ, Salles G, Abramson JS, Schuster SJ, Locke FL, Andreadis C. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am J Hematol. 2021;96(10):1295-312.
  88. Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium. J Clin Oncol. 2020;38(27):3119–28. [Crossref]  [PubMed]  [PMC]
  89. Jaglowski S, Hu ZH, Zhang Y, Kamdar M, Ghosh M, Lulla P, et al. Tisagenlecleucel chimeric antigen receptor (CAR) T-cell therapy for adults with diffuse large B-cell lymphoma (DLBCL): real world experience from the Center for International Blood & Marrow Transplant Research (CIBMTR) Cellular Therapy (CT) registry. Blood. 2019;134(1):766. Suppl–766. [Crossref]
  90. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J Med. 2020;382(14):1331–42.
  91. Abramson JS, Palomba ML, Gordon LI, Lunnung MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. [Crossref]
  92. Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, et al.; All ZUMA-7 Investigators and Contributing Kite Members. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N Engl J Med. 2022;386(7):640-54.
  93. Abramson JS, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study. Blood. 2023;141(14):1675-84. [Crossref]  [PubMed]  [PMC]
  94. Anderson JLD, Munshi NC, Shah N, Jagannath S, Berdeja JG, Lonial S, et al. Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in relapsed and refractory multiple myeloma: updated KarMMa results. J Clin Oncol. 2021;39:8016. [Crossref]
  95. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314-24.
  96. San-Miguel J, Dhakal B, Yong K, Spencer A, Anguille S, Mateos MV, et al. Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma. N Engl J Med. 2023;389(4):335-47. [Crossref]
  97. Grigor EJM, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD, et al. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfusion Med Rev. 2019;33(2):98–110. [Crossref]
  98. Sahillioglu AC, Schumacher TN. Safety switches for adoptive cell therapy. Curr Opin Immunol. 2022;74:190-8. [Crossref]
  99. Castelli S, Young RM, June CH: Off-the-shelf CAR T cells to treat cancer. Cell Res. 2022, 32:1036-7. [Crossref]  [PubMed]  [PMC]