ADVANCED IMAGING IN AGE-RELATED MACULAR DEGENERATION
İsa Yuvacı1
Fatma Seniha Genç2
1Sakarya University, Faculty Of Medicine, Department of Ophthalmology, Sakarya, Türkiye
2Sakarya Training and Research Hospital, Department of Ophthalmology, Sakarya, Türkiye
Yuvacı İ, Genç FS. Advanced Imaging in Age-Related Macular Degeneration. In: Çıtırık M, Şekeryapan Gediz B, editors. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.73-85.
ABSTRACT
Age-related macular degeneration (AMD) is a retinal disease with a number of macular manifestations. The most profound consequence of this disease is loss of central vision. It is important to detect early changes in retina to prevent vision loss
There have been promising developments in AMD imaging recently. One of these methods is Adaptive Optics, which obtains precise images at the instantaneous and cellular level by eliminating optical aberrations. Another promising method is molecular imaging, which combines ocular imaging techniques with retinal biomarkers. A further method employs reflection and autofluorescencegenerating techniques. Endogenous fluorophores are stimulated.
The availability of numerous imaging modalities can lead to confusion. Using multimodal imaging partially aids in overcoming this, but it can be financially burdensome. Thus, an appropriate combination of imaging modalities and accurate data analysis will shape our undertstanding of retinal diseases and lead to developments in the follow-up and treatment of patients.
Keywords: Amd; Multimodal imaging; Moleculer imaging
Kaynak Göster
Referanslar
- Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, et al.; Age-Related Eye Disease Study Group. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005;123(11):1484-98. [Crossref] [PubMed] [PMC]
- Sarraf D, Gin T, Yu F, Brannon A, Owens SL, Bird AC. Long-term drusen study. Retina. 1999;19(6):513-9. [Crossref] [PubMed]
- Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801-10. [Crossref] [PubMed]
- Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010;117(9):1775-81. [Crossref] [PubMed]
- Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS,et al.; Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005;123(11):1570-4. [Crossref] [PubMed] [PMC]
- Christenbury JG, Phasukkijwatana N, Gilani F, Freund KB, Sadda S, Sarraf D. Progressıon Of Macular Atrophy In Eyes Wıth Type 1 Neovascularızatıon And Age-Related Macular Degeneratıon Receıvıng Long-Term Intravıtreal Antı-Vascular Endothelıal Growth Factor Therapy: An Optical Coherence Tomographic Angiography Analysis. Retina. 2018;38(7):1276-1288. [Crossref] [PubMed]
- Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J Ophthalmol. 2001;132(5):668-81. [Crossref] [PubMed]
- Cooper RF, Dubis AM, Pavaskar A, Rha J, Dubra A, Carroll J. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. Biomed Opt Express. 2011,1;2(9):2577-89. [Crossref] [PubMed] [PMC]
- Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14(11):2884-92. [Crossref] [PubMed]
- Miller DT, Kocaoglu OP, Wang Q, Lee S. Adaptive optics and the eye (super resolution OCT). Eye (Lond). 2011;25(3):321-30. [Crossref] [PubMed] [PMC]
- Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991, 22;254(5035):1178-81. [Crossref] [PubMed] [PMC]
- Akyol E, Hagag AM, Sivaprasad S, Lotery AJ. Correction: Adaptive optics: principles and applications in ophthalmology. Eye (Lond). 2021 Jun;35(6):1796. Erratum for: Eye (Lond). 2021;35(1):244-264. [Crossref] [PubMed] [PMC]
- Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002,6;10(9):405-12. [Crossref] [PubMed]
- Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res. 2019 Jan;68:1-30. [Crossref] [PubMed] [PMC]
- Dong ZM, Wollstein G, Wang B, Schuman JS. Adaptive optics optical coherence tomography in glaucoma. Prog Retin Eye Res. 2017;57:76-88. [Crossref] [PubMed] [PMC]
- Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci U S A. 2017,28;114(48):12803-12808. [Crossref] [PubMed] [PMC]
- Carroll J, Kay DB, Scoles D, Dubra A, Lombardo M. Adaptive optics retinal imaging--clinical opportunitiesand challenges. Curr Eye Res. 2013;38(7):709-21. [Crossref] [PubMed] [PMC]
- Jian Y, Lee S, Ju MJ, Heisler M, Ding W, Zawadzki RJ, et al. Lens-based wavefront sensorless adaptive optics swept source OCT. Sci Rep. 2016,9;6:27620. [Crossref] [PubMed] [PMC]
- Zhang B, Li N, Kang J, He Y, Chen XM. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update. Int J Ophthalmol. 2017, 18;10(11):1751-1758. [Crossref] [PubMed]
- Mohankumar A, Gurnani B. Scanning Laser Ophthalmoscope. 2023 Jun 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. PMID: 36508528.. [PubMed]
- Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, et al. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. Biomed Opt Express. 2022,19;14(1):299-314. [Crossref] [PubMed] [PMC]
- Merino D, Loza-Alvarez P. Adaptive optics scanning laser ophthalmoscope imaging: technology update. Clin Ophthalmol. 2016,26;10:743-55. [Crossref] [PubMed] [PMC]
- Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Biomed Eng. 1981 Jul;28(7):488-92. [Crossref] [PubMed]
- Liu X, Liu T, Wen R, Li Y, Puliafito CA, Zhang HF, et al. Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging. Opt Lett. 2015,1;40(7):1370-3. [Crossref] [PubMed] [PMC]
- Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express. 2013,23;4(9):1710-23. [Crossref] [PubMed] [PMC]
- Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, Dubra A. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci.2014,6;55(7):4244-51. [Crossref] [PubMed] [PMC]
- Boretsky A, Khan F, Burnett G, Hammer DX, Ferguson RD, van Kuijk F, et al. In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: A pilot study. Lasers Surg Med. 2012;44(8):603-10. [Crossref] [PubMed] [PMC]
- Roorda A. Applications of adaptive optics scanning laser ophthalmoscopy. Optom Vis Sci. 2010 Apr;87(4):260-8. [Crossref] [PubMed] [PMC]
- Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, et al. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express. 2011, 1;2(7):1864-76. [Crossref] [PubMed] [PMC]
- Kaizu Y, Nakao S, Wada I, Yamaguchi M, Fujiwara K, Yoshida S, et al. Imaging of Retinal Vascular Layers: Adaptive Optics Scanning Laser Ophthalmoscopy Versus Optical Coherence Tomography Angiography. Transl Vis Sci Technol. 2017,1;6(5):2. [Crossref] [PubMed] [PMC]
- Liu Z, Kocaoglu OP, Miller DT. 3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina. Invest Ophthalmol Vis Sci. 2016,1;57(9):OCT533-43. [Crossref] [PubMed] [PMC]
- Gil JQ, Marques JP, Hogg R, Rosina C, Cachulo ML, Santos A, et al. Clinical features and long-term progression of reticular pseudodrusen in age-related macular degeneration: findings from a multicenter cohort. Eye (Lond). 2017;31(3):364-371. [Crossref] [PubMed] [PMC]
- Finger RP, Wu Z, Luu CD, Kearney F, Ayton LN, Lucci LM, et al. Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization. Ophthalmology. 2014;121(6):1252-6. [Crossref] [PubMed] [PMC]
- Querques G, Kamami-Levy C, Blanco-Garavito R, Georges A, Pedinielli A, Capuano V, et al. Appearance of medium-large drusen and reticular pseudodrusen on adaptive optics in age-related macular degeneration. Br J Ophthalmol. 2014;98(11):1522-7. [Crossref] [PubMed]
- Zhang Y, Wang X, Godara P, Zhang T, Clark ME, Witherspoon CD, et al. Dynamısm Of Dot Subretınal Drusenoıd Deposıts In Age-Related Macular Degeneratıon Demonstrated Wıth Adaptıve Optıcs Imagıng. Retina. 2018;38(1):29-38. [Crossref] [PubMed] [PMC]
- Godara P, Siebe C, Rha J, Michaelides M, Carroll J. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg Lasers Imaging.2010;41(Suppl):S104-8. [Crossref] [PubMed] [PMC]
- Granger CE, Yang Q, Song H, Saito K, Nozato K, Latchney LR, et al. Human Retinal Pigment Epithelium: In Vivo Cell Morphometry, Multispectral Autofluorescence, and Relationship to Cone Mosaic. Invest Ophthalmol Vis Sci. 2018,3;59(15):5705-5716. [Crossref] [PubMed] [PMC]
- Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci U S A. 2017,28;114(48):12803-12808. [Crossref] [PubMed] [PMC]
- Querques G, Massamba N, Guigui B, Lea Q, Lamory B, Soubrane G, et al. Souied EH. In vivo evaluation of photoreceptor mosaic in early onset large colloid drusen using adaptive optics. Acta Ophthalmol. 2012;90(4):e327-8. [Crossref] [PubMed]
- Gocho K, Sarda V, Falah S, Sahel JA, Sennlaub F, Benchaboune M, et al. Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci. 2013,1;54(5):3673-80.doi: 10.1167/iovs.12-10672. [Crossref] [PubMed]
- Zayit-Soudry S, Duncan JL, Syed R, Menghini M, Roorda AJ. Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013,15;54(12):7498-509. [Crossref] [PubMed] [PMC]
- Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, et al. Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci. 2003;44(10):4481-8. [Crossref] [PubMed]
- Jung H, Liu J, Liu T, George A, Smelkinson MG, Cohen S, et al. Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. JCI Insight. 2019,21;4(6):e124904. [Crossref] [PubMed] [PMC]
- Rossi EA, Norberg N, Eandi C, Chaumette C, Kapoor S, Le L, et al. A New Method for Visualizing Drusen and Their Progression in Flood-Illumination Adaptive Optics Ophthalmoscopy. Transl Vis Sci Technol. 2021,1;10(14):19. Erratum in: Transl Vis Sci Technol. 2022,3;11(10):29. Erratum in: Transl Vis Sci Technol. 2023,3;12(7):20. [Crossref] [PubMed] [PMC]
- Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration. Ophthalmol Retina. 2019;3(10):850-859. [Crossref] [PubMed]
- Williams DR. Imaging single cells in the living retina. Vision Res. 2011,1;51(13):1379-96. [Crossref] [PubMed] [PMC]
- Querques G, Kamami-Levy C, Georges A, Pedinielli A, Capuano V, Blanco-Garavito R, et al. Adaptıve Optıcs Imagıng Of Foveal Sparıng In Geographıc Atrophy Secondary To Age-Related Macular Degeneratıon. Retina.2016;36(2):247-54. [Crossref] [PubMed]
- Ramos de Carvalho JE, Verbraak FD, Aalders MC, van Noorden CJ, Schlingemann RO. Recent advances in ophthalmic molecular imaging. Surv Ophthalmol. 2014;59(4):393-413. [Crossref] [PubMed]
- Capozzi ME; Gordon AY; Penn JS; Jayagopal A Molecular imaging of retinal disease. J. Ocul. Pharmacol. Ther. 2013,29, 275-286. [PubMed: 23421501] [Crossref] [PubMed] [PMC]
- Chen ZY, Wang YX, Lin Y, Zhang JS, Yang F, Zhou QL, Liao YY. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res Int. 2014;2014:819324. [Crossref] [PubMed] [PMC]
- James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897-965. [Crossref] [PubMed]
- Frimmel S, Zandi S, Sun D, Zhang Z, Schering A, Melhorn MI, et al. Molecular Imaging of Retinal Endothelial Injury in Diabetic Animals. J Ophthalmic Vis Res. 2017;12(2):175-182. [PubMed]
- Uddin MI, Jayagopal A, McCollum GW, Yang R, Penn JS. In Vivo Imaging of Retinal Hypoxia Using HYPOX-4-Dependent Fluorescence in a Mouse Model of Laser-Induced Retinal Vein Occlusion (RVO). Invest Ophthalmol Vis Sci. 2017,1;58(9):3818-3824. [Crossref] [PubMed] [PMC]
- Tsuda S, Tanaka Y, Kunikata H, Yokoyama Y, Yasuda M, Ito A, et al. Real-time imaging of RGC death with a cell-impermeable nucleic acid dyeing compound after optic nerve crush in a murine model. Exp Eye Res. 2016;146:179-188. [Crossref] [PubMed]
- Cordeiro MF, Migdal C, Bloom P, Fitzke FW, Moss SE. Imaging apoptosis in the eye. Eye (Lond). 2011;25(5):545-53. [Crossref] [PubMed] [PMC]
- Ahmad SS. An introduction to DARC technology. Saudi J Ophthalmol. 2017;31(1):38-41. [Crossref] [PubMed] [PMC]
- Normando EM, Turner LA, Cordeiro MF. The potential of annexin-labelling for the diagnosis and follow-up of glaucoma. Cell Tissue Res. 2013;353(2):279-85. [Crossref] [PubMed]
- Louie A. Multimodality imaging probes: design and challenges. Chem Rev. 2010,12;110(5):3146-95. [Crossref] [PubMed] [PMC]
- Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24(7):848-51. [Crossref] [PubMed]
- de la Zerda A, Paulus YM, Teed R, Bodapati S, Dollberg Y, Khuri-Yakub BT, et al. Photoacoustic ocular imaging. Opt Lett. 2010,1;35(3):270-2. [Crossref] [PubMed] [PMC]
- Hu S, Rao B, Maslov K, Wang LV. Label-free photoacoustic ophthalmic angiography. Opt Lett. 2010,1;35(1):1-3. [Crossref] [PubMed] [PMC]
- Jiao S, Jiang M, Hu J, Fawzi A, Zhou Q, Shung KK, Puliafito CA, Zhang HF. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt Express. 2010,15;18(4):3967-72. [Crossref] [PubMed] [PMC]
- Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res. 2017;58:115-151. [Crossref] [PubMed] [PMC]
- Hennen SN, Xing W, Shui YB, Zhou Y, Kalishman J, Andrews-Kaminsky LB, et all. Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits. Exp Eye Res. 2015;138:153-8. [Crossref] [PubMed] [PMC]
- Tian C, Zhang W, Mordovanakis A, Wang X, Paulus YM. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Opt Express. 2017,10;25(14):15947-15955. [Crossref] [PubMed] [PMC]
- Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N,et al. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep. 2014,6;4:6525. [Crossref] [PubMed] [PMC]
- Pilotto E, Guidolin F, Convento E, Spedicato L, Vujosevic S, Cavarzeran F, et al. Fundus autofluorescence and microperimetry in progressing geographic atrophy secondary to age-related macular degeneration. Br J Ophthalmol. 2013;97(5):622-6. [Crossref] [PubMed]
- Fleckenstein M, Mitchell P, Freund KB, Sadda S, Holz FG, Brittain C, et al. The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology. 2018;125(3):369-390. [Crossref] [PubMed]
- Holz FG, Sadda SR, Staurenghi G, Lindner M, Bird AC, Blodi BA, et al. Imaging Protocols in Clinical Studies in Advanced Age-Related Macular Degeneration: Recommendations from Classification of Atrophy Consensus Meetings. Ophthalmology. 2017;124(4):464-478. [Crossref] [PubMed]
- Lindner M, Böker A, Mauschitz MM, Göbel AP, Fimmers R, Brinkmann CK, et al.; Fundus Autofluorescence in Age-Related Macular Degeneration Study Group. Directional Kinetics of Geographic Atrophy Progression in Age-Related Macular Degeneration with Foveal Sparing. Ophthalmology. 2015;122(7):1356-65. [Crossref] [PubMed]
- Wu Z, Ayton LN, Luu CD, Baird PN, Guymer RH. Reticular Pseudodrusen in Intermediate Age-Related Macular Degeneration: Prevalence, Detection, Clinical, Environmental, and Genetic Associations. Invest Ophthalmol Vis Sci. 2016;57(3):1310-6. [Crossref] [PubMed]
- Pang CE, Freund KB. Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology. Am J Ophthalmol. 2014;158(1):171-178.e2. [Crossref] [PubMed]
- Ben Moussa N, Georges A, Capuano V, Merle B, Souied EH, Querques G. MultiColor imaging in the evaluation of geographic atrophy due to age-related macular degeneration. Br J Ophthalmol. 2015;99(6):842-7. [Crossref] [PubMed]
- Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res. 2017 Sep;60:120-143. [Crossref] [PubMed] [PMC]
- Dysli C, Fink R, Wolf S, Zinkernagel MS. Fluorescence Lifetimes of Drusen in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017,1;58(11):4856-4862. [Crossref] [PubMed]
- Dysli C, Wolf S, Zinkernagel MS. Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2016, 1;57(6):2479-87. [Crossref] [PubMed]
- Song W, Wei Q, Feng L, Sarthy V, Jiao S, Liu X, et al. Multimodal photoacoustic ophthalmoscopy in mouse. J Biophotonics. 2013;6(6-7):505-512. [Crossref] [PubMed] [PMC]
- Servillo A, Sacconi R, Oldoni G, Barlocci E, Tombolini B, Battista M, et. al. Advancements in Imaging and Therapeutic Options for Dry Age-Related Macular Degeneration and Geographic Atrophy. Ophthalmol Ther. 2024;13(8):2067-2082. [Crossref] [PubMed] [PMC]
- Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, Bird AC, et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology. 2018 Apr;125(4):537-548. Erratum in: Ophthalmology. 2019;126(1):177. [Crossref] [PubMed]