ADVANCED TREATMENTS AND INNOVATIONS- RETINAL IMPLANTS AND BIONIC EYES
Menekşe İnal Özen
Kastamonu Training and Research Hospital, Department of Ophthalmology, Kastamonu, Türkiye
İnal Özen M. Advanced Treatments and InnovatıonsRetinal Implants and Bionic Eyes. In: Çıtırık M, Şekeryapan Gediz B, editors. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.251-262.
ABSTRACT
Retinal implants are devices that can transmit visual stimuli directly to the retina or brain, especially for individuals who have vision loss due to diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). These prostheses aim to restore visual function through electrical stimulation. Retinal prostheses receive visual information from the external environment via a camera or photodiode, process it and convert it into electrical signals, and transmit it to the retinal ganglion cells or directly to the visual cortex, creating artificial vision in the form of phosphenes. This section will discuss implant types such as epiretinal, subretinal, suprachoroidal, and cortical implants. Epiretinal implants are placed on the retina’s anterior surface to stimulate the ganglion cells. The Argus II is the most well-known implant and is CE and FDA approved. Subretinal devices are placed under the retinal pigment epithelium in the photoreceptor layer. It has been determined that the subretinally placed PRIMA implant preserves peripheral vision, which is important for AMD patients. Suprachoroidal implants are designed to be placed between the choroid and sclera. Cortical implants stimulate the visual cortex of the occipital lobe of the brain. Although retinal implants provide limited vision, they help patients perform daily activities more independently by increasing their environmental awareness. In the future, it is aimed to further improve visual function with more advanced and high-resolution implant systems.
Keywords: Argus II; Geographic atrophy; Visual prosthesis; Photovoltaic retinal implant; Age-related macular degeneration
Kaynak Göster
Referanslar
- Wong WL, Su X,Li X, Cheung CMG, Klein R, Cheng CY, et al., Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health 2014;2(2):106-116. [Crossref] [PubMed]
- Curcio CA, Medeiros NE, Millican CL, Photoreceptor loss in age-related macular degeneration. Investigative ophthalmology & visual science 1996;37(7):1236-1249. [PubMed]
- Ferris FL, Fine SL, Hyman L, Age-related macular degeneration and blindness due to neovascular maculopathy. Archives of ophthalmology 1984;102(11):1640-1642. [Crossref] [PubMed]
- Kim S, Sadda S, Humayun M, de Juan Jr E, Melia B, Green W, Morphometric analysis of the macula in eyes with geographic atrophy due to age-related macular degeneration. Retina 2002;22(4):464-470. [Crossref] [PubMed]
- Rachitskaya AV, Yuan A, Argus II retinal prosthesis system: an update. Ophthalmic Genetics 2016;37(3): 260-266. [Crossref] [PubMed]
- Falabella P, Nazari H, Schor P, Weiland JD, Humayun MS, Argus® II retinal prosthesis system. Artificial Vision: A Clinical Guide 2017;49-63. [Crossref]
- Chuang AT, Margo CE, Greenberg PB, Retinal implants: a systematic review. British Journal of Ophthalmology 2014;98(7):852-856. [Crossref] [PubMed]
- Bloch E, Luo Y, da Cruz L, Advances in retinal prosthesis systems. Therapeutic advances in ophthalmology 2019;11: 2515841418817501. [Crossref] [PubMed] [PMC]
- Foerster O, Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J. Psychol. Neurol., Lpz. 1929;39:463. [Link]
- Dobelle W, Mladejovsky M, Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. The Journal of physiology 1974;243(2):553-576. [Crossref] [PubMed] [PMC]
- Brindley GS, Lewin WS, The sensations produced by electrical stimulation of the visual cortex. The Journal of physiology 1968;196(2):479-493. [Crossref] [PubMed] [PMC]
- GE T, Preliminary report on a retinal stimulator. The British journal of physiological optics 1956;13(2):102-105. [Link]
- Humayun MS ,Fernandes RAB,Weiland JD, Artificial vision. In Retina, Elsevier: 2013; pp 2078-2093. [Crossref]
- Özmert E,Arslan U, Retinal Prostheses and Artificial Vision. Turk J Ophthalmol 2019;49(4):213-219. [Crossref] [PubMed] [PMC]
- Humayun MS, Dorn JD,Da Cruz L,Dagnelie G,Sahel J-A,Stanga PE, et al., Interim results from the international trial of Second Sight's visual prosthesis. Ophthalmology 2012;119(4);779-788. [Crossref] [PubMed] [PMC]
- Uğur A, Kuru Tip (Non-Neovasküler) Yaşa Bağlı Makula Dejenerasyonunda Kök Hücre Tedavisi, Gen Tedavisi ve Retinal İmplant. [Link]
- Montezuma SR, Tang PH,Van Kuijk FJ,Drayna P,Koozekanani DD, Implantation of the Argus II retinal prosthesis in an eye with short axial length. Ophthalmic Surgery, Lasers and Imaging Retina 2016;47(4):369-371. [Crossref] [PubMed]
- Güven D, Düzgün E,Kutucu OK,Gül C, Argus II Retinal Protez İmplantasyonu Yapılan 3 Olgunun Uzun Dönem Klinik Bulgularının Değerlendirilmesi. Turk J Ophthalmol 2023;53 (1):58-66. [Crossref] [PubMed] [PMC]
- da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J,Barale PO, et al., Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology 2016;123(10):2248-2254. [Crossref] [PubMed] [PMC]
- Ho AC, Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Handa J, et al., Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 2015;122(8):1547-1554. [Crossref] [PubMed] [PMC]
- Rizzo S, Barale PO, Ayello-Scheer S ,Devenyi RG, Delyfer MN, Korobelnik JF, et al., Hypotony and the Argus II retinal prosthesis: causes, prevention and management. British Journal of Ophthalmology 2020;104(4):518-523. [Crossref] [PubMed]
- Delyfer MN, Gaucher D, Govare M, Cougnard-Grégoire A, Korobelnik J-F, Ajana S, et al., Adapted surgical procedure for Argus II retinal implantation: feasibility, safety, efficiency, and postoperative anatomic findings. Ophthalmology Retina 2018;2(4):276-287. [Crossref] [PubMed]
- Rizzo S, Cinelli L, Finocchio L, Tartaro R, Santoro F, Gregori NZ, Assessment of postoperative morphologic retinal changes by optical coherence tomography in recipients of an electronic retinal prosthesis implant. JAMA ophthalmology2019;137(3):272-278. [Crossref] [PubMed] [PMC]
- Stanga PE, Tsamis E, Dorn JD, Jalil A, Ch'ng S, Stringa F, et al., Argus® II Electronic Epiretinal Prosthesis in Advanced Dry Age-Related Macular Degeneration: Safety and Feasibility Study-1st Year Functional and Structural Results. Investigative Ophthalmology & Visual Science 2017;58(8):4265-4265. [Link]
- Stanga PE,Tsamis E,Siso-Fuertes I,Dorn JD,Merlini F,Fisher A, et al., Electronic retinal prosthesis for severe loss of vision in geographic atrophy in age-related macular degeneration: First-in-human use. Eur J Ophthalmol 2021;31(3):920-931. [Crossref] [PubMed]
- Ayton LN, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, et al., An update on retinal prostheses. Clinical Neurophysiology 2020;131(6):1383-1398 [Crossref] [PubMed] [PMC]
- Menzel-Severing J, Laube T, Brockmann C, Bornfeld N, Mokwa W, Mazinani B, et al., Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye 2012;26(4):501-509. [Crossref] [PubMed] [PMC]
- Walter P, A fully intraocular approach for a bi-directional retinal prosthesis. Artificial Vision: a clinical guide 2017;151-161. [Crossref] [PMC]
- Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, et al., Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Investigative ophthalmology & visual science 2009;50(6):3003-3008. [Crossref] [PubMed]
- Loewenstein JI, Montezuma SR, Rizzo JF, Outer retinaldegeneration: an electronic retinal prosthesis as a treatment strategy. Archives of Ophthalmology 2004;122(4):587-596. [Crossref] [PubMed]
- Ramirez KA, Drew-Bear LE, Vega-Garces MBetancourt-Belandria H, Arevalo JF, An update on visual prosthesis. International Journal of Retina and Vitreous 2023; 9(1):73. [Crossref] [PubMed] [PMC]
- Benav H, Bartz-Schmidt KU, Besch D, Bruckmann A, Gekeler F, Greppmaier U, et al. In Restoration of useful vision up to letter recognition capabilities using subretinal microphotodiodes, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE: 2010; pp 5919-5922. [Crossref] [PubMed]
- Stingl K, Bartz-Schmidt KU, Besch D, Braun A,Bruckmann A, Gekeler F, et al., Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society B: Biological Sciences 2013;280 (1757):20130077. [Crossref] [PubMed] [PMC]
- Zrenner E, Bartz-Schmidt KU, Besch D, Gekeler F, Koitschev A, Sachs HG, et al., The subretinal implant ALPHA: implantation and functional results. Artificial vision: a clinical guide 2017;65-83. [Crossref]
- Stingl K,Bartz-Schmidt KU,Besch D,Chee CK,Cottriall CL,Gekeler F, et al., Subretinal visual implant alpha IMS- clinical trial interim report. Vision research 2015;111:149-160. [Crossref] [PubMed]
- Stingl K,Bartz-Schmidt KU,Besch D,Braun A,Bruckmann A,Gekeler F, et al., Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 2013;280(1757):20130077. [Crossref] [PubMed] [PMC]
- Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel V-P, et al., Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings of the Royal Society B: Biological Sciences 2011;278(1711):1489-1497. [Crossref] [PubMed] [PMC]
- ACAR GÖÇGİL N, Görsel Protezlerde Klinik Sonuçlar ve Güncel Durum. Retina-Vitreus/Journal of Retina-Vitreous 2019;28(4). [Link]
- Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, et al., Photovoltaic restoration of sight with high visual acuity. Nature Medicine 2015;21(5):476-482. [Crossref] [PubMed] [PMC]
- Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al., Photovoltaic retinal prosthesis: implant fabrication and performance. Journal of neural engineering 2012;9(4):046014. [Crossref] [PubMed] [PMC]
- Ayton LN, Barnes N, Dagnelie G, Fujikado T, Goetz G, Hornig R, et al., An update on retinal prostheses. Clinical Neurophysiology 2020;131(6):1383-1398. [Crossref] [PubMed] [PMC]
- Palanker D, Le Mer Y, Mohand-Said S, Muqit M, Sahel JA, Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 2020;127(8):1097-1104. [Crossref] [PubMed] [PMC]
- Muqit MMK,Mer YL,Holz FG,Sahel JA, Long-term observations of macular thickness after subretinal implantation of a photovoltaic prosthesis in patients with atrophic age-related macular degeneration. J Neural Eng 2022;19(5). [Crossref] [PubMed] [PMC]
- Villalobos J,Nayagam DA,Allen PJ,McKelvie P,Luu CD,Ayton LN, et al., A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. Investigative ophthalmology & visual science 2013;54(5):3751-3762. [Crossref] [PubMed]
- Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DA, Sinclair NC, et al., First-in-human trial of a novel suprachoroidal retinal prosthesis. PloS one 2014;9(12):115239. [Crossref] [PubMed] [PMC]
- Ayton LN, Suaning GJ, Lovell NH, Petoe MA, Nayagam DA, Brawn T-LE, et al., Suprachoroidal retinal prostheses. Artificial Vision: A Clinical Guide 2017;125-138. [Crossref]
- Eggenberger SC, James NL, Ho C, Eamegdool SS, Tatarinoff V,Craig NA, et al., Implantation and long-term assessment of the stability and biocompatibility of a novel 98 channel suprachoroidal visual prosthesis in sheep. Biomaterials 2021;279:121191. [Crossref] [PubMed]
- Fujikado T, Retinal prosthesis by suprachoroidal-transretinal stimulation (STS), Japanese approach. Artificial vision: a clinical guide 2017;139-150. [Crossref]
- Fujikado T, Kamei M,Sakaguchi H,Kanda H,Morimoto T,Ikuno Y, et al., Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Investigative ophthalmology & visual science 2011;52(7):4726-4733. [Crossref] [PubMed]
- Schatz A,Röck T,Naycheva L,Willmann G,Wilhelm B,Peters T, et al., Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Investigative ophthalmology & visual science 2011;52(7):4485-4496. [Crossref] [PubMed]
- Morimoto T,Kanda H,Kondo M,Terasaki H,Nishida K,Fujikado T, Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits. Investigative ophthalmology & visual science 2012;5 (7):4254-4261. [Crossref] [PubMed]
- Schwartz SD, Tan G, Hosseini H, Nagiel A, Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Investigative ophthalmology & visual science 2016;57(5): [Crossref] [PubMed]
- Fujikado T, Kamei M, Sakaguchi H, Kanda H, Endo T, Hirota M, et al., One-year outcome of 49-channel suprachoroidal-transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Investigative ophthalmology & visual science 2016;57(14):6147-6157. [Crossref] [PubMed]
- Wang V, Kuriyan AE, Optoelectronic devices for vision restoration. Current ophthalmology reports 2020;8:69-77. [Crossref] [PubMed] [PMC]
- Fernández E, Pelayo F, Ahnelt P, Ammermüller J, Normann R, Cortical visual neuroprostheses for the blind. Restorative Neurology and Neuroscience 2004. [Link]
- Moon JY, Sather III RN, Montezuma SR, Overview of Retinal Prosthesis and Future Directions. [Link]