AGE-RELATED MACULAR DEGENERATION AND OPTIC COHERENCE TOMOGRAPHY ANGIOGRAPHY

Seda Çevik Kaya

Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Türkiye

Çevik Kaya S. Age-Related Macular Degeneration and Optic Coherence Tomography Angiography. In: Çıtırık M, Şekeryapan Gediz B, editors. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.61-71.

ABSTRACT

Age-related macular degeneration (AMD) is a significant disease that can result in irreversible central vision loss, particularly among elderly individuals. Optical Coherence Tomography Angiography (OCTA) is being utilized more frequently in both dry and wet (exudative) AMD due to its non-invasive nature, its ability to generate high-resolution vessel maps, and its capacity to provide detailed information for treatment follow-up. In the context of dry AMD, OCTA offers substantial advantages, particularly in the monitoring of vascular density changes and geographic atrophy progression. Conversely, in wet AMD, OCTA plays a pivotal role in assessing the extent and morphology of macular neovascularization (MNV) and response to treatment.However, it is important to note that OCTA is not without limitations, including its relatively limited field of view, the potential for motion and segmentation artifacts, and the need for further refinement to enhance its diagnostic and prognostic capabilities. Recent advancements in artificial intelligence-based analyses have led to significant improvements in the effectiveness of OCTA data for both diagnosis and prognosis prediction. Nevertheless, challenges persist, including the need for standardization of data and the execution of validation studies in clinical settings.

Keywords: Optical coherence tomography angiography; Age related macular degeneration; Geographic atrophy; Macular neovascularization

Referanslar

  1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. Feb 2014;2(2):e106-16. [Crossref]  [PubMed]
  2. Wong TY, Chakravarthy U, Klein R, et al. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. Jan 2008;115(1):116-26. [Crossref]  [PubMed]
  3. Boopathiraj N, Wagner IV, Dorairaj SK, Miller DD, Stewart MW. Recent Updates on the Diagnosis and Management of Age-Related Macular Degeneration. Mayo Clin Proc Innov Qual Outcomes. Aug 2024;8(4):364-374. [Crossref]  [PubMed]  [PMC]
  4. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. Optical coherence angiography. Opt Express. Aug 21 2006;14(17):7821-40. [Crossref]  [PubMed]
  5. Gao SS, Jia Y, Zhang M, et al. Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Jul 1 2016;57(9):Oct27-36. [Crossref]  [PubMed]  [PMC]
  6. Herrera G, Cheng Y, Attiku Y, et al. Comparison between Spectral-domain and Swept-source OCT Angiography Scans for the Measurement of Hyperreflective Foci in Age-related Macular Degeneration. Ophthalmol Sci. Mar-Apr 2025;5(2):100633. [Crossref]  [PubMed]  [PMC]
  7. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. May 2018;64:1-55. [Crossref]  [PubMed]  [PMC]
  8. Choi WJ. Imaging Motion: A Comprehensive Review of Optical Coherence Tomography Angiography. Adv Exp Med Biol. 2021;1310:343-365. [Crossref]  [PubMed]
  9. Javed A, Khanna A, Palmer E, et al. Optical coherence tomography angiography: a review of the current literature. J Int Med Res. Jul 2023;51(7):3000605231187933. [Crossref]  [PubMed]  [PMC]
  10. Le PH, Kaur K, Patel BC. Optical Coherence Tomography Angiography. StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025. [Link]
  11. Hormel TT, Jia Y, Jian Y, et al. Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Prog Retin Eye Res. Jan 2021;80:100878. [Crossref]  [PubMed]  [PMC]
  12. Campbell JP, Zhang M, Hwang TS, et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep. Feb 10 2017;7:42201. [Crossref]  [PubMed]  [PMC]
  13. Borrelli E, Sarraf D, Freund KB, Sadda SR. OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. Nov 2018;67:30-55. [Crossref]  [PubMed]
  14. Servillo A, Sacconi R, Oldoni G, et al. Advancements in Imaging and Therapeutic Options for Dry Age-Related Macular Degeneration and Geographic Atrophy. Ophthalmol Ther. Aug 2024;13(8):2067-2082. [Crossref]  [PubMed]  [PMC]
  15. Narnaware SH, Bansal A, Bawankule PK, Raje D, Chakraborty M. Vessel density changes in choroid, chorio-capillaries, deep and superficial retinal plexues on OCTA in normal ageing and various stages of age-related macular degeneration. Int Ophthalmol. Oct 2023;43(10):3523-3532. [Crossref]  [PubMed]
  16. Lee SC, Rusakevich AM, Amin A, et al. Long-Term Retinal Vascular Changes in Age-Related Macular Degeneration Measured Using Optical Coherence Tomography Angiography. Ophthalmic Surg Lasers Imaging Retina. Oct 2022;53(10):529-536. [Crossref]  [PubMed]
  17. Kırıkkaya E, Kaynak S. Role of OCTA in the prognosis of dry-type AMD. Eur Rev Med Pharmacol Sci. Dec 2023;27(23):11264-11274. [Link]
  18. Faatz H, Lommatzsch A. Overview of the Use of Optical Coherence Tomography Angiography in Neovascular Age-Related Macular Degeneration. J Clin Med. Aug 25 2024;13(17). [Crossref]  [PubMed]  [PMC]
  19. Nassisi M, Lei J, Abdelfattah NS, et al. OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the Fellow Eyes of Patients Enrolled in the HARBOR Study. Ophthalmology. Dec 2019;126(12):1667-1674. [Crossref]  [PubMed]
  20. Klaver CC, Assink JJ, van Leeuwen R, et al. Incidence and progression rates of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci. Sep 2001;42(10):2237-41. [Link]
  21. Spaide RF, Fujimoto JG, Waheed NK. IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. Nov 2015;35(11):2163-80. [Crossref]  [PubMed]  [PMC]
  22. Neri G, Olivieri C, Serafino S, et al. Choriocapillaris in Age-Related Macular Degeneration. Turk J Ophthalmol. Aug 28 2024;54(4):228-234. [Crossref]  [PubMed]  [PMC]
  23. Romano F, Ding X, Yuan M, et al. Progressive Choriocapillaris Changes on Optical Coherence Tomography Angiography Correlate With Stage Progression in AMD. Invest Ophthalmol Vis Sci. Jul 1 2024;65(8):21. [Crossref]  [PubMed]  [PMC]
  24. Hobbs SD, Tripathy K, Pierce K. Wet Age-Related Macular Degeneration (AMD). StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2025. [Link]
  25. Costanzo E, Miere A, Querques G, Capuano V, Jung C, Souied EH. Type 1 Choroidal Neovascularization Lesion Size: Indocyanine Green Angiography Versus Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Jul 1 2016;57(9):Oct307-13. [Crossref]  [PubMed]
  26. Taha AA, Lazar D, Julin C, Sørensen TL. Use of optical coherence tomography angiography for the diagnosis of age-related macular degeneration. Dan Med J. Sep 6 2023;70(10). [Link]
  27. Bailey ST, Thaware O, Wang J, et al. Detection of Nonexudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using OCT Angiography. Ophthalmol Retina. Aug 2019;3(8):629-636. [Crossref]  [PubMed]  [PMC]
  28. Yang J, Zhang Q, Motulsky EH, et al. Two-Year Risk of Exudation in Eyes with Nonexudative Age-Related Macular Degeneration and Subclinical Neovascularization Detected with Swept Source Optical Coherence Tomography Angiography. Am J Ophthalmol. Dec 2019;208:1-11. [Crossref]  [PubMed]  [PMC]
  29. El Ameen A, Cohen SY, Semoun O, et al. TYPE 2 Neovascularization Secondary To Age-Related Macular Degeneration Imaged By Optical Coherence Tomography Angiography. Retina. Nov 2015;35(11):2212-8. [Crossref]  [PubMed]
  30. Kuehlewein L, Bansal M, Lenis TL, et al. Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. Am J Ophthalmol. Oct 2015;160(4):739-48.e2. [Crossref]  [PubMed]
  31. Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol. Jun 2017;95(4):414-420. [Crossref]  [PubMed]
  32. Pilotto E, Frizziero L, Daniele AR, et al. Early OCT angiography changes of type 1 CNV in exudative AMD treated with anti-VEGF. Br J Ophthalmol. Jan 2019;103(1):67-71. [Crossref]  [PubMed]
  33. Karacorlu M, Sayman Muslubas I, Arf S, Hocaoglu M, Ersoz MG. Membrane patterns in eyes with choroidal neovascularization on optical coherence tomography angiography. Eye (Lond). Aug 2019;33(8):1280-1289. [Crossref]  [PubMed]  [PMC]
  34. Zhao Z, Yang F, Gong Y, et al. The Comparison of Morphologic Characteristics of Type 1 and Type 2 Choroidal Neovascularization in Eyes with Neovascular Age-Related Macular Degeneration using Optical Coherence Tomography Angiography. Ophthalmologica. 2019;242(3):178-186. [Crossref]  [PubMed]
  35. Nagiel A, Sarraf D, Sadda SR, et al. Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography. Retina. Apr2015;35(4):638-47. [Crossref]  [PubMed]
  36. Kataoka K, Takeuchi J, Nakano Y, et al. Characteristics And Classification Of Type 3 Neovascularization With B-Scan Flow Overlay And En Face Flow Images Of Optical Coherence Tomography Angiography. Retina. Jan 2020;40(1):109-120. [Crossref]  [PubMed]
  37. Valler D, Feucht N, Lohmann CP, Ulbig M, Maier M. [Diagnostic criteria: OCT angiography for retinal angiomatous proliferation (RAP lesions, type 3 neovascularization)]. Ophthalmologe. Jun 2020;117(6):529-537. Diagnostische Kriterien: OCT‑Angiographie bei retinalen angiomatösen Proliferationen (RAP-Läsionen, Typ-3-Neovaskularisationen). [Crossref]  [PubMed]
  38. Rispoli M, Savastano MC, Lumbroso B, Toto L, Di Antonio L. Type 1 Choroidal Neovascularization Evolution by Optical Coherence Tomography Angiography: Long-Term Follow-Up. Biomed Res Int. 2020;2020:4501395. [Crossref]  [PubMed]  [PMC]
  39. Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied EH. Optical Coherence Tomography Angiography Versus Traditional Multimodal Imaging In Assessing The Activity Of Exudative Age-Related Macular Degeneration: A New Diagnostic Challenge. Retina. Nov 2015;35(11):2219-28. [Crossref]  [PubMed]
  40. Tan AC, Dansingani KK, Yannuzzi LA, Sarraf D, Freund KB. Type 3 Neovascularization Imaged With Cross-Sectional And En Face Optical Coherence Tomography Angiography. Retina. Feb 2017;37(2):234-246. [Crossref]  [PubMed]
  41. Xu D, Dávila JP, Rahimi M, et al. Long-term Progression of Type 1 Neovascularization in Age-related Macular Degeneration Using Optical Coherence Tomography Angiography. Am J Ophthalmol. Mar 2018;187:10-20. [Crossref]  [PubMed]
  42. Tillmann A, Turgut F, Munk MR. Optical coherence tomography angiography in neovascular age-related macular degeneration: comprehensive review of advancements and future perspective. Eye (Lond). Aug 15 2024. [Link]
  43. Wongchaisuwat N, Wang J, White ES, Hwang TS, Jia Y, Bailey ST. Detection of Macular Neovascularization in Eyes Presenting with Macular Edema using OCT Angiography and a Deep Learning Model. Ophthalmol Retina. Oct 24 2024. [Crossref]  [PubMed]
  44. Deák GG, Birner K, Gerendas BS, et al. Comparison of optical coherence tomography vs. fluorescein angiography-based macular neovascularization classifications in age-related macular degeneration. Sci Rep. Feb 5 2025;15(1):4303. [Crossref]  [PubMed]  [PMC]