ARTIFICIAL INTELLIGENCE (AI) IN ESOPHAGUS DISEASES
Mehmet Reşit Sönmez
Evliya Çelebi Training and Research Hospital, Department of Gastroenterology Surgery, Kütahya, Türkiye
Sönmez MR. Artificial Intelligence (AI) in Esophagus Diseases. Çaycı HM, ed. Artificial Intelligence (AI) in Gastrointestinal Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.35-43.
ABSTRACT
Artificial intelligence (AI) is a technology that enables human-like reasoning and autonomous decision-making. In recent years, its use in medicine has increased significantly, leading to advances in diagnosis and treatment. In esophageal diseases, AI technologies are increasingly used to overcome diagnostic and management challenges. AI reduces endoscopist dependency and increases the sensitivity of cancer detection by real-time lesion detection during endoscopy. Early esophageal cancer detection is the best tool for treating cancer and improving prognosis. Therefore, most AI efforts in esophageal cancer have focused on detecting early-stage cancer. AI provides consistent and reliable diagnostic results by reducing interindividual variability in manometric assessment. Additionally, AI applications are increasingly used in robotic surgery for esophageal diseases and reduce surgical complications. AI provides optimal treatment results by developing treatment strategies based on individual patient profiles. AI ultimately offers personalized treatment approaches. AI facilitates and improves advantages in many areas, but it also has disadvantages. Data privacy and algorithm transparency risks are significant concerns. Developing multimodal systems that integrate data from different sources, such as imaging, genetics, and electronic records of esophageal diseases, appear as highlights for future AI studies. In light of all matters discussed, it is better understood that AI improves the diagnosis and management of esophageal diseases by improving accuracy, efficiency, and personalization.
Keywords: Artificial intelligence (AI); Esophageal diseases; Esophageal cancer; Esophageal movement disorders; Endoscopy
Kaynak Göster
Referanslar
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019 Jan;25(1):44-56. Epub 2019 Jan 7. [Crossref] [PubMed]
- Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. N Engl J Med. 2019 Apr 4;380(14):1347-1358. [Crossref] [PubMed]
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. [Crossref] [PubMed]
- Liu Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J Gastroenterol. 2021 Apr 14;27(14):1392-1405. [Crossref] [PubMed] [PMC]
- Visaggi P, Barberio B, Gregori D, Azzolina D, Martinato M, Hassan C, et al. Systematic review with meta-analysis: artificial intelligence in the diagnosis of esophageal diseases. Aliment Pharmacol Ther. 2022 Mar;55(5):528-540. Epub 2022 Jan 30. Erratum in: Aliment Pharmacol Ther. 2022 Sep;56(5):928. [Crossref] [PubMed] [PMC]
- de Groof AJ, Struyvenberg MR, Fockens KN, van der Putten J, van der Sommen F, Boers TG, et al. Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: a pilot study (with video). Gastrointest Endosc. 2020 Jun;91(6):1242-1250. Epub 2020 Jan 10. [Crossref] [PubMed]
- Ebigbo A, Mendel R, Probst A, Manzeneder J, Prinz F, de Souza LA Jr, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut. 2020 Apr;69(4):615-616. Epub 2019 Sep 20. [Crossref] [PubMed] [PMC]
- Minchenberg SB, Walradt T, Glissen Brown JR. Scoping out the future: The application of artificial intelligence to gastrointestinal endoscopy. World J Gastrointest Oncol. 2022 May 15;14(5):989-1001. [Crossref] [PubMed] [PMC]
- Pandolfino JE, Gawron AJ. Achalasia: a systematic review. JAMA. 2015 May 12;313(18):1841-52. [Crossref] [PubMed]
- Masashi Takeuchi, Hirofumi Kawakubo, Tasuku Furube, Atsushi Nakao, Kazuhiko Hisaoka, Satoru Matsuda et al. 276. AI NAVIGATION SURGERY FOR ESOPHAGEAL CANCER, Diseases of the Esophagus, Volume 37, Issue Supplement_1, September 2024, doae057.052, [Crossref]
- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022 Jan;72(1):7-33. Epub 2022 Jan 12. [Crossref] [PubMed]
- Curtius K, Rubenstein JH, Chak A, Inadomi JM. Computational modelling suggests that Barrett's esophagus may be the precursor of all esophageal adenocarcinomas. Gut. 2020 Nov 24;70(8):1435-40. Epub ahead of print. [Crossref] [PubMed] [PMC]
- Zhang YH, Guo LJ, Yuan XL, Hu B. Artificial intelligence-assisted esophageal cancer management: Now and future. World J Gastroenterol. 2020 Sep 21;26(35):5256-5271. [Crossref] [PubMed] [PMC]
- Fockens KN, Jong MR, Jukema JB, Boers TGW, Kusters CHJ, van der Putten JA, et al. Barrett's Esophagus Imaging for Artificial Intelligence (BONS-AI) consortium. A deep learning system for detection of early Barrett's neoplasia: a model development and validation study. Lancet Digit Health. 2023 Dec;5(12): e905-e916. [Crossref] [PubMed]
- Faghani S, Codipilly DC, David Vogelsang, Moassefi M, Rouzrokh P, Khosravi B, et al. Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett's esophagus. Gastrointest Endosc. 2022 Dec;96(6):918-925.e3. Epub 2022 Jun 17. [Crossref] [PubMed]
- Leggett CL. Endoscopic screening for esophageal cancer: empowering artificial intelligence with a high-quality examination. Lancet Gastroenterol Hepatol. 2024 Jan;9(1):4-5. Epub 2023 Nov 10. [Crossref] [PubMed]
- Sharma P, Hassan C. Artificial Intelligence and Deep Learning for Upper Gastrointestinal Neoplasia. Gastroenterology. 2022 Apr;162(4):1056-1066. Epub 2021 Dec 11. [Crossref] [PubMed]
- Yun L, Liu W, Lin YX, Deng QY, Gao YP, Wan L, et al. Effect of an artificial intelligence-assisted system on endoscopic diagnosis of superficial esophageal squamous cell carcinoma and precancerous lesions: a multicentre, tandem, double-blind, randomised controlled trial. Lancet Gastroenterol Hepatol. 2024 Jan;9(1):34-44. Epub 2023 Nov 10. Erratum in: Lancet Gastroenterol Hepatol. 2024 Jul;9(7): e10. [Crossref] [PubMed]
- Takeda T, Asaoka D, Ueyama H, Abe D, Suzuki M, Inami Y, Uemura Y, et al. Development of an Artificial Intelligence Diagnostic System Using Linked Color Imaging for Barrett's Esophagus. J Clin Med. 2024 Mar 29;13(7):1990. [Crossref] [PubMed] [PMC]
- Neumann H, Kreft A, Sivanathan V, Rahman F, Galle PR. Evaluation of novel LCI CAD EYE system for real time detection of colon polyps. PLoS One. 2021 Aug 26;16(8): e0255955. [Crossref] [PubMed] [PMC]
- Shimamoto Y, Ishihara R, Kato Y, Shoji A, Inoue T, Matsueda K, et al. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. J Gastroenterol. 2020 Nov;55(11):1037-1045. Epub 2020 Aug 10. [Crossref] [PubMed]
- Tokai Y, Yoshio T, Aoyama K, Horie Y, Yoshimizu S, Horiuchi Y, et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus. 2020 Jul;17(3):250-256. Epub 2020 Jan 24. [Crossref] [PubMed]
- Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc. 2019 Sep;90(3):407-414. Epub 2019 May 8. [Crossref] [PubMed]
- Guidozzi N, Menon N, Chidambaram S, Markar SR. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus. 2023 Nov 30;36(12): doad048. [Crossref] [PubMed] [PMC]
- Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc. 2020 Jan;91(1):41-51. Epub 2019 Aug 21. [Crossref] [PubMed]
- Iyer PG, Sachdeva K, Leggett CL, Codipilly DC, Abbas H, Anderson K, et al. Development of Electronic Health Record-Based Machine Learning Models to Predict Barrett's Esophagus and Esophageal Adenocarcinoma Risk. Clin Transl Gastroenterol. 2023 Oct 1;14(10):e00637. [Crossref] [PubMed] [PMC]
- van der Sommen F, Zinger S, Curvers WL, Bisschops R, Pech O, Weusten BL, Bergman JJ, de With PH, Schoon EJ. Computer-aided detection of early neoplastic lesions in Barrett's esophagus. Endoscopy. 2016 Jul;48(7):617-24. Epub 2016 Apr 21. [Crossref] [PubMed]
- Uema R, Hayashi Y, Tashiro T, et al. Use of a convolutional neural network for classifying microvessels of superficial esophageal squamous cell carcinomas. J Gastroenterol Hepatol. 2021;36(8):2239-2246. Epub 2021 Mar 10. [Crossref] [PubMed]
- Hussein M, González-Bueno Puyal J, Mountney P, Lovat LB, Haidry R. Role of artificial intelligence in the diagnosis of esophageal neoplasia: 2020 an endoscopic odyssey. World J Gastroenterol. 2020 Oct 14;26(38):5784-5796. [Crossref] [PubMed] [PMC]
- Shin D, Lee MH, Polydorides AD, Pierce MC, Vila PM, Parikh ND, et al. Quantitative analysis of high-resolution microendoscopic images for diagnosis of neoplasia in patients with Barrett's esophagus. Gastrointest Endosc. 2016 Jan;83(1):107-14. Epub 2015 Aug 5. [Crossref] [PubMed] [PMC]
- Qi X, Sivak MV, Isenberg G, Willis JE, Rollins AM. Computer-aided diagnosis of dysplasia in Barrett's esophagus using endoscopic optical coherence tomography. J Biomed Opt. 2006 Jul-Aug;11(4):044010. [Crossref] [PubMed]
- Zhao YY, Xue DX, Wang YL, Zhang R, Sun B, Cai YP, et al. Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. Endoscopy. 2019 Apr;51(4):333-341. Epub 2018 Nov 23. [Crossref] [PubMed]
- Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012 Mar;48(4):441-6. Epub 2012 Jan 16. [Crossref] [PubMed] [PMC]
- Jha S, Topol EJ. Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists. JAMA. 2016 Dec 13;316(22):2353-2354. [Crossref] [PubMed]
- Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg. 2018 Jul;268(1):70-76. [Crossref] [PubMed] [PMC]
- Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med. 2018 Nov;24(11):1716-1720. Epub 2018 Oct 22. [Crossref] [PubMed]
- Fox MR, Bredenoord AJ. Esophageal high-resolution manometry: moving from research into clinical practice. Gut. 2008 Mar;57(3):405-23. Epub 2007 Sep 25. [Crossref] [PubMed]
- Kahrilas PJ. Esophageal motor disorders in terms of high-resolution esophageal pressure topography: what has changed? Am J Gastroenterol. 2010 May;105(5):981-7. Epub 2010 Feb 23. [Crossref] [PubMed] [PMC]
- Bredenoord AJ, Fox M, Kahrilas PJ, et al. Interational High Resolution Manometry Working Group. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography. Neurogastroenterol Motil 2012;24(Suppl 1):57-65. [Crossref] [PubMed] [PMC]
- Abdullah R, Fakieh B. Health Care Employees' Perceptions of the Use of Artificial Intelligence Applications: Survey Study. J Med Internet Res. 2020 May 14;22(5): e17620. [Crossref] [PubMed] [PMC]
- Castagno S, Khalifa M. Perceptions of Artificial Intelligence Among Healthcare Staff: A Qualitative Survey Study. Front Artif Intell. 2020 Oct 21; 3:578983. [Crossref] [PubMed] [PMC]
- Goodman K, Zandi D, Reis A, Vayena E. Balancing risks and benefits of artificial intelligence in the health sector. Bull World Health Organ. 2020 Apr 1;98(4):230-230A. [Crossref] [PubMed] [PMC]