ARTIFICIAL INTELLIGENCE (AI) IN LOWER GASTROINTESTINAL ENDOSCOPY

Rıdvan Yavuz

Antalya Training and Research Hospital, Department of Gastroenterology Surgery, İstanbul, Türkiye

Yavuz R. Artificial Intelligence (AI) in Lower Gastrointestinal Endoscopy. Çaycı HM, ed. Artificial Intelligence (AI) in Gastrointestinal Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.173-185.

ABSTRACT

Lower gastrointestinal system endoscopy includes a group of diagnostic procedures commonly used to evaluate the lower parts of the digestive system and diagnose diseases. These methods are crucial in early diagnosis and screening processes. However, challenges in identifying small, flat, or camouflaged polyps, especially for less experienced endoscopists, can increase false-negative rates due to difficulty in visualizing lesions and making accurate diagnoses. The dependency of screening quality and scope on the endoscopist may lead to overlooked areas and missed diagnoses. Traditional methods often require lengthy examinations, increasing per-patient procedure times, which reduces daily procedure capacity due to time loss and workload. Fatigue, loss of focus, and human error, such as missed findings, further contribute to inaccuracies.Artificial intelligence (AI) has the potential to revolutionize these challenges. AI-powered image processing algorithms enhance the detection and characterization of lesions, allowing the precise identification of even small and flat polyps. By flagging lesions that the endoscopist may overlook, AI reduces false-negative rates. Additionally, AI ensures complete colon screening with real-time monitoring, improving both screening coverage and diagnostic accuracy. AI systems automate image analysis, reducing procedure times and enhancing time management and efficiency. This alleviates the workload of endoscopists, enabling them to treat more patients.AI also plays a vital role in operator training and standardization. By guiding new endoscopists in a didactic manner, AI helps improve endoscopy skills and ensures standardized results. Moreover, AI is transforming healthcare by advancing personalized medicine, early diagnosis, and optimizing clinical processes. In lower gastrointestinal system endoscopy, AI has the potential to improve diagnostic accuracy and time management. Its ability to detect diseases at an early stage can enhance treatment outcomes and quality of life.Additionally, AI minimizes human errors and provides standardized evaluations, increasing reliability in clinical practice. Future studies should focus on data diversity, algorithm development, and regulatory frameworks. Effectively integrating AI into healthcare requires not only technological advancements but also consideration of patient safety and ethical principles. This transformation will create new opportunities for both healthcare professionals and patients. Comprehensive training is essential to help healthcare professionals understand and utilize AI technologies as its clinical application becomes widespread.

Keywords: Lower gastrointestinal system endoscopy; Artificial intelligence; Polyps; Inflammatory bowel disease; Healthcare transformation; Technology; Innovation

Referanslar

  1. Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, et al. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol. 2021 Oct 28;27(40):6794-6824. [Crossref]  [PubMed]  [PMC]
  2. Milluzzo SM, Cesaro P, Graziosi LM, Olivari N, Spada C. Artificial intelligence in lower gastrointestinal endoscopy: the current status and future perspective. Clin Endosc. 2021;54(3):329-339. [Crossref]  [PubMed]  [PMC]
  3. Alagappan M, Brown JRG, Mori Y, Berzin TM. Artificial intelligence in gastrointestinal endoscopy: The future is almost here. World J Gastrointest Endosc. 2018 Oct 16;10(10):239-249. [Crossref]  [PubMed]  [PMC]
  4. Pannala R, Krishnan K, Melson J, Parsi MA, Schulman AR, Sullivan S, et al. Artificial intelligence in gastrointestinal endoscopy. VideoGIE. 2020 Dec;5(12):598-613. [Crossref]  [PubMed]  [PMC]
  5. Mori Y, Kudo S, Mohmed HEN, Misawa M, Ogata N, Itoh H, et al. Artificial intelligence and upper gastrointestinal endoscopy: current status and future perspective. Dig Endosc. 2019;31(3):378-388. [Crossref]  [PubMed]
  6. Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol. 2019 Apr 14;25(14):1666-1683. [Crossref]  [PubMed]  [PMC]
  7. Min JK, Kwak MS, Cha JM. Overview of Deep Learning in Gastrointestinal Endoscopy. Gut Liver. 2019 Jan 11;13(4):388-393. [Crossref]  [PubMed]  [PMC]
  8. Ali S. Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions. NPJ Digit Med. 2022 Dec;5:184. [Crossref]  [PubMed]  [PMC]
  9. Ahmad A, Wilson A, Haycock A, Humphries A, Monahan K, Suzuki N, et al. Evaluation of a real-time computer-aided polyp detection system during screening colonoscopy: AI-DETECT study. Endoscopy. 2023;55(4):313-319. [Crossref]  [PubMed]
  10. Hassan C, Marco M, Spadaccini M, Iannone A, Maselli R, Jovani M, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93(1):77-85.e6. [Crossref]  [PubMed]
  11. Nazarian S, Glover B, Ashrafian H, Darzi A, Teare J. Diagnostic accuracy of artificial intelligence and computer-aided diagnosis for the detection and characterization of colorectal polyps: systematic review and meta-analysis. J Med Internet Res. 2021;23(7):e27370. [Crossref]  [PubMed]  [PMC]
  12. Solitano V, Zilli A, Franchinelli G, Allocca M, Fiorino G, Furfaro F, et al. Artificial endoscopy and inflammatory bowel disease: welcome to the future. J Clin Med. 2022;11(3):569. [Crossref]  [PubMed]  [PMC]
  13. Zamarchi I, Santacroce G, Iacucci M. Next-generation endoscopy in inflammatory bowel disease. Diagnostics (Basel). 2023;13(15):2547. [Crossref]  [PubMed]  [PMC]
  14. Yamamoto S, Kinugasa H, Hamada K, Tomiya M, Tanimoto T, Ohto A, et al. The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: a pilot study. J Gastroenterol Hepatol. 2022 May;37(5):1105-1115. [Crossref]  [PubMed]
  15. Jouke JH, van der Laan AM, van der Waaij AM, Gabriels RY, Festen EA, Dijkstra G, et al. Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies. Expert Rev Gastroenterol Hepatol. 2021;15(2):115-126. [Crossref]  [PubMed]
  16. Tontini GE, Rimondi A, Vernero M, Neumann H, Vecchi M, Bezzio C, et al. Artificial intelligence in gastrointestinal endoscopy for inflammatory bowel disease: a systematic review and new horizons. Ther Adv Gastroenterol. 2021;14:17562848211017730. [Crossref]  [PubMed]  [PMC]
  17. Xie W, Hu J, Liang P, Hu Q, Wang A, Liu Q, et al. Deep learning-based lesion detection and severity grading of small-bowel Crohn's disease ulcers on double-balloon endoscopy images. Gastrointest Endosc. 2024 May;99(5):767-777.e5. [Crossref]  [PubMed]
  18. Tontini GE, Rimondi A, Vernero M, Neumann H, Vecchi M, Bezzio C, et al. Artificial intelligence in gastrointestinal endoscopy for inflammatory bowel disease: a systematic review and new horizons. Ther Adv Gastroenterol. 2021;14:1-12. [Crossref]  [PubMed]  [PMC]
  19. Boers TGW, Fockens KN, van der Putten JA, Jaspers TMJ, Kusters CHJ, Jukema JB, et al. Foundation models in gastrointestinal endoscopic AI: impact of architecture, pre-training approach and data efficiency. Med Image Anal. 2024 Dec;98:103298. [Crossref]  [PubMed]
  20. Parasher G, Wong M, Rawat M. Evolving role of artificial intelligence in gastrointestinal endoscopy. World J Gastroenterol. 2020 Dec 14;26(46):7287-7298. [Crossref]  [PubMed]  [PMC]
  21. Bogár PZ, Virag M, Bene M, Hardi P, Matuz A, Schlegl AT, et al. Validation of a novel, low-fidelity virtual reality simulator and an artificial intelligence assessment approach for peg transfer laparoscopic training. Sci Rep. 2024 Jul;14:16702. [Crossref]  [PubMed]  [PMC]
  22. Fukuta A, Yamashita S, Maniwa J, Tamaki A, Kondo T, Kawakubo N, et al. Artificial intelligence facilitates the potential of simulator training: an innovative laparoscopic surgical skill validation system using artificial intelligence technology. Int J Comput Assist Radiol Surg. 2024 Aug;19:1-9. [Crossref]
  23. Grover S, Walsh CM. Integrating artificial intelligence into endoscopy training: opportunities, challenges, and strategies. Lancet Gastroenterol Hepatol. 2024 Jan;9(1):11-13. [Crossref]  [PubMed]
  24. Wu J, Chen J, Cai J. Application of artificial intelligence in gastrointestinal endoscopy. J Clin Gastroenterol. 2021 Feb;55(2):110-120. [Crossref]  [PubMed]
  25. Lou S, Du X, Song W, Xia Y, Yue X, Yang D. Artificial intelligence for colorectal neoplasia detection during colonoscopy: a systematic review and meta-analysis of randomized clinical trials. EClinicalMedicine. 2023 Dec;66:102341. [Crossref]  [PubMed]  [PMC]
  26. Jin XF, Ma HY, Shi JW, Cai JF. Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials. Gastrointest Endosc. 2024 May;99(5):667-675.e7. [Crossref]  [PubMed]
  27. Bang CS, Lee JJ, Baik GH. Artificial intelligence for the prediction of Helicobacter pylori infection in endoscopic images: systematic review and meta-analysis of diagnostic test accuracy. J Med Internet Res. 2020 Sep;22(9):e21983. [Crossref]  [PubMed]  [PMC]
  28. Luo D, Kuang F, Du J, Zhou M, Liu X, Luo X, et al. Artificial intelligence-assisted endoscopic diagnosis of early upper gastrointestinal cancer: a systematic review and meta-analysis. Front Oncol. 2022 Jun;12:855175. [Crossref]  [PubMed]  [PMC]
  29. Aziz M, Haghighi H, Sayeh W, Alfattawi H, Gangwani M, Sohail A, et al. Comparison of artificial intelligence with other interventions to improve adenoma detection rate for colonoscopy: a network meta-analysis. J Clin Gastroenterol. 2024 Feb;58(2):143-155. [Crossref]  [PubMed]
  30. Kudo SE, Mori Y, Misawa M, Takeda K, Kudo T, Itoh H, et al. Artificial intelligence and colonoscopy: current status and future perspectives. Dig Endosc. 2019;31(4):363-371. [Crossref]  [PubMed]
  31. Sinnoquel P, Eelbode T, Bossuyt P, Maes F, Bisschops R. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Dig Endosc. 2020 Nov;32(6):1011-1020. [Link]
  32. El Hajjar A, Rey JF. Artificial intelligence in gastrointestinal endoscopy: general overview. Chin Med J (Engl). 2020;133(3):326-334. [Crossref]  [PubMed]  [PMC]
  33. Misawa M, Kudo S, Mori Y, Maeda Y, Ogawa Y, Ichimasa K, et al. Current status and future perspective on artificial intelligence for lower endoscopy. Dig Endosc. 2020 Sep;32(6):848-857. [Link]
  34. Boškoski I, Orlandini B, Papparella LG, Matteo MV, De Siena M, Pontecorvi V, et al. Robotics and artificial intelligence in gastrointestinal endoscopy: updated review of the literature and state of the art. Curr Robot Rep. 2021 Feb;2(1):43-54. [Crossref]
  35. Antonelli G, Gkolfakis P, Tziatzios G, Papanikolaou IS, Triantafyllou K, Hassan C. Artificial intelligence-aided colonoscopy: Recent developments and future perspectives. World J Gastroenterol. 2020 Dec 21;26(47):7436-7443. [Crossref]  [PubMed]  [PMC]