ARTIFICIAL INTELLIGENCE (AI) IN MEDICAL AND SURGICAL EDUCATION

İlkay Halıcıoğlu

Diyarbakır Gazi Yaşargil Training and Research Hospital, Department of Gastroenterology Surgery, Diyarbakır, Türkiye

Halıcıoğlu İ. Artificial Intelligence (AI) in Medical and Surgical Education. Çaycı HM, ed. Artificial Intelligence (AI) in Gastrointestinal Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.113-122.

ABSTRACT

Artificial intelligence (AI) is rapidly transforming medical education, especially in hepatobiliary surgery and hepatology. AI technologies such as simulations, image processing, decision support systems and personalized training programs are improving the education and skills of medical professionals. In surgical training, AI-powered simulation models are improving outcomes and reducing errors by providing realistic and safe practice environments for basic procedures such as laparoscopic cholecystectomy and complex procedures such as liver resections. Image processing and 3D modeling help with preoperative planning and a better understanding of anatomical complexities.

In hepatology, AI-powered diagnostic tools and simulations help train specialists by improving accuracy in diagnosing liver diseases and interpreting complex imaging data. Virtual patient simulations and AI-powered decision support systems provide real-time feedback, enabling personalized and effective learning. While AI offers remarkable opportunities, its integration into medical education must address ethical, safety and transparency concerns. Moreover, human expertise remains important as AI serves as a supportive tool rather than a substitute. By combining AI innovations with clinical expertise, medical education and patient care will reach higher levels.

Keywords: Artificial intelligence; Education; Gastroenterology

Referanslar

  1. Hutson M. Could AI help you to write your next paper? Nature. 2022;611(7934):192-193. [Crossref]  [PubMed]
  2. Meo SA, AbuKhalaf AA, Meo MZS, Meo MOS, Ayub R, ElToukhy RA, et al. Role of artificial intelligence (Google bard) in morphological, histopathological, and radiological image identifications: Objective Structured Practical Examination (OSPE) type-based performance. Saudi Med J. 2024;45(5):531-536. [Crossref]  [PubMed]  [PMC]
  3. Ieiri S, Uemura M, Konishi K, et al. Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int. 2012;28(4):341-346. [Crossref]  [PubMed]
  4. Onda S, Okamoto T, Kanehira M, et al. Identification of inferior pancreaticoduodenal artery during pancreaticoduodenectomy using augmented reality-based navigation system. J Hepatobiliary Pancreat Sci. 2014;21(4):281-287. [Crossref]  [PubMed]
  5. Dawe SR, Windsor JA, Broeders JA, Cregan PC, Hewett PJ, Maddern GJ. A systematic review of surgical skills transfer after simulation-based training: laparoscopic cholecystectomy and endoscopy. Ann Surg. 2014;259(2):236-48. [Crossref]  [PubMed]
  6. Saito Y, Shimada M, Morine Y, Yamada S, Sugimoto M. Essential updates 2020/2021: Current topics of simulation and navigation in hepatectomy. Ann Gastroenterol Surg. 2021;6(2):190-196. [Crossref]  [PubMed]  [PMC]
  7. Müller-Stich BP, Löb N, Wald D, Bruckner T, Meinzer HP, Kadmon M, et al. Regular three-dimensional presentations improve in the identification of surgical liver anatomy - a randomized study. BMC Med Educ. 2013;13:131. [Crossref]  [PubMed]  [PMC]
  8. Yang T, Lin S, Xie Q, Ouyang W, Tan T, Li J, et al. Impact of 3D printing technology on the comprehension of surgical liver anatomy. Surg Endosc. 2019;33(2):411-417. [Crossref]  [PubMed]
  9. Ozer MA, Uguz A, Unalp OV, Coker A, Govsa F, Guler E, et al. Perceptions of porta-celiac vascular models for hepatic surgery and their use in residency training. Surg Radiol Anat. 2021;43(8):1359-1371. [Crossref]  [PubMed]
  10. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ. 2014;71(1):14-7. [Crossref]  [PubMed]
  11. Javan R, Herrin D, Tangestanipoor A. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis. Acad Radiol. 2016;23(9):1183-9. [Crossref]  [PubMed]
  12. Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P. Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci. 2011;18(4):506-9. [Crossref]  [PubMed]
  13. Pelanis E, Kumar RP, Aghayan DL, Palomar R, Fretland ÅA, Brun H, et al. Use of mixed reality for improved spatial understanding of liver anatomy. Minim Invasive Ther Allied Technol. 2020;29(3):154-160. [Crossref]  [PubMed]
  14. Mise Y, Hasegawa K, Satou S, Shindoh J, Miki K, Akamatsu N, et al. How Has Virtual Hepatectomy Changed the Practice of Liver Surgery?: Experience of 1194 Virtual Hepatectomy Before Liver Resection and Living Donor Liver Transplantation. Ann Surg. 2018;268(1):127-133. [Crossref]  [PubMed]
  15. Kazami Y, Kaneko J, Keshwani D, Kitamura Y, Takahashi R, Mihara Y, et al. Two-step artificial intelligence algorithm for liver segmentation automates anatomic virtual hepatectomy. J Hepatobiliary Pancreat Sci. 2023;30(11):1205-1217. [Crossref]  [PubMed]
  16. Kolbinger FR, Rinner FM, Jenke AC, Carstens M, Krell S, Leger S, et al. Anatomy segmentation in laparoscopic surgery: comparison of machine learning and human expertise - an experimental study. Int J Surg. 2023;109(10):2962-2974. [Crossref]  [PubMed]  [PMC]
  17. Witowski J, Budzyński A, Grochowska A, Ballard DH, Major P, et al. Decision-making based on 3D printed models in laparoscopic liver resections with intraoperative ultrasound: a prospective observational study. Eur Radiol. 2020;30(3):1306-1312. [Crossref]  [PubMed]  [PMC]
  18. Xie A, Fang C, Huang Y, Fan Y, Pan J, Peng F. Application of three-dimensional reconstruction and visible simulation technique in reoperation of hepatolithiasis. J Gastroenterol Hepatol. 2013;28(2):248-54. [Crossref]  [PubMed]
  19. Javaheri H, Ghamarnejad O, Bade R, Lukowicz P, Karolus J, Stavrou GA. Beyond the visible: preliminary evaluation of the first wearable augmented reality assistance system for pancreatic surgery. Int J Comput Assist Radiol Surg. 2025;20(1):117-129. [Crossref]  [PubMed]  [PMC]
  20. Mascagni P, Alapatt D, Lapergola A, Vardazaryan A, Mazellier JP, Dallemagne B, Mutter D, Padoy N. Early-stage clinical evaluation of real-time artificial intelligence assistance for laparoscopic cholecystectomy. Br J Surg. 2024;111(1):znad353. [Crossref]  [PubMed]
  21. Yang HY, Hong SS, Yoon J, Park B, Yoon Y, Han DH, et al. Deep learning-based surgical phase recognition in laparoscopic cholecystectomy. Ann Hepatobiliary Pancreat Surg. 2024;28(4):466-473. [Crossref]  [PubMed]  [PMC]
  22. Fujinaga A, Endo Y, Etoh T, Kawamura M, Nakanuma H, Kawasaki T, et al. Development of a cross-artificial intelligence system for identifying intraoperative anatomical landmarks and surgical phases during laparoscopic cholecystectomy. Surg Endosc. 2023;37(8):6118-6128. [Crossref]  [PubMed]
  23. Cheng K, You J, Wu S, Chen Z, Zhou Z, Guan J, et al. Artificial intelligence-based automated laparoscopic cholecystectomy surgical phase recognition and analysis. Surg Endosc. 2022;36(5):3160-3168. [Crossref]  [PubMed]
  24. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, et al. Artificial Intelligence for Intraoperative Guidance: Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann Surg. 2022;276(2):363-369. [Crossref]  [PubMed]  [PMC]
  25. Saito Y, Sugimoto M, Imura S, Morine Y, Ikemoto T, Iwahashi S, et al. Intraoperative 3D Hologram Support With Mixed Reality Techniques in Liver Surgery. Ann Surg. 2020;271(1):e4-e7. [Crossref]  [PubMed]
  26. Fang CH, Kong D, Wang X, Wang H, Xiang N, Fan Y, et al. Three-dimensional reconstruction of the peripancreatic vascular system based on computed tomographic angiography images and its clinical application in the surgical management of pancreatic tumors. Pancreas. 2014;43(3):389-95. [Crossref]  [PubMed]
  27. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020 Oct;92(4):807-812. [Crossref]  [PubMed]
  28. Seth P, Hueppchen N, Miller SD, Rudzicz F, Ding J, Parakh K, et al. Data Science as a Core Competency in Undergraduate Medical Education in the Age of Artificial Intelligence in Health Care. JMIR Med Educ. 2023;9:e46344. [Crossref]  [PubMed]  [PMC]
  29. Berbís MA, Paulano Godino F, Royuela Del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol. 2023;29(9):1427-1445. [Crossref]  [PubMed]  [PMC]
  30. European Society of Radiology (ESR). Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology. Insights Imaging. 2022;13(1):107. [Crossref]  [PubMed]  [PMC]
  31. Ahn Y, Yoon JS, Lee SS, Suk HI, Son JH, Sung YS,et al. Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images. Korean J Radiol. 2020;21(8):987-997. [Crossref]  [PubMed]  [PMC]
  32. Jansen MJA, Kuijf HJ, Veldhuis WB, Wessels FJ, Viergever MA, Pluim JPW. Automatic classification of focal liver lesions based on MRI and risk factors. PLoS One. 2019;14(5):e0217053. [Crossref]  [PubMed]  [PMC]
  33. Zamanian H, Mostaar A, Azadeh P, Ahmadi M. Implementation of Combinational Deep Learning Algorithm for Non-alcoholic Fatty Liver Classification in Ultrasound Images. J Biomed Phys Eng. 2021;11(1):73-84. [Crossref]  [PubMed]  [PMC]
  34. Yang Q, Wei J, Hao X, Kong D, Yu X, Jiang T, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study. EBio Medicine. 2020;56:102777. [Crossref]  [PubMed]  [PMC]
  35. Kui B, Pintér J, Molontay R, Nagy M, Farkas N, Gede N, et al. Hungarian Pancreatic Study Group. EASY-APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis. Clin Transl Med. 2022;12(6):e842. [Crossref]  [PubMed]  [PMC]
  36. Ahn JC, Noh YK, Rattan P, Buryska S, Wu T, Kezer CA, et al. Machine Learning Techniques Differentiate Alcohol-Associated Hepatitis From Acute Cholangitis in Patients With Systemic Inflammation and Elevated Liver Enzymes. Mayo Clin Proc. 2022;97(7):1326-1336. [Crossref]  [PubMed]
  37. Docherty M, Regnier SA, Capkun G, Balp MM, Ye Q, Janssens N, et al. Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis. J Am Med Inform Assoc. 2021;28(6):1235-1241. [Crossref]  [PubMed]  [PMC]
  38. So HY, Chen PP, Wong GKC, Chan TTN. Simulation in medical education. J R Coll Physicians Edinb. 2019;49(1):52-57. [Crossref]  [PubMed]
  39. Sakakushev BE, Marinov BI, Stefanova PP, Kostianev SS, Georgiou EK. Striving for Better Medical Education: the Simulation Approach. Folia Med (Plovdiv). 2017;59(2):123-131. [Crossref]  [PubMed]
  40. Akaike M, Fukutomi M, Nagamune M, Fujimoto A, Tsuji A, Ishida K, Iwata T. Simulation-based medical education in clinical skills laboratory. J Med Invest. 2012;59(1-2):28-35. [Crossref]  [PubMed]
  41. Soetikno R, Asokkumar R, McGill SK, Kaltenbach T. Simulation-Based Mastery Learning for Practicing Gastroenterologists-Renewed Importance in the Era of COVID-19. Am J Gastroenterol. 2020;115(9):1380-1383. [Crossref]  [PubMed]  [PMC]
  42. Sahakian AB, Laine L, Jamidar PA, Siddiqui UD, Duffy A, Ciarleglio MM, et al. Can a Computerized Simulator Assess Skill Level and Improvement in Performance of ERCP? Dig Dis Sci. 2016;61(3):722-30. [Crossref]  [PubMed]
  43. Bittner JG 4th, Mellinger JD, Imam T, Schade RR, Macfadyen BV Jr. Face and construct validity of a computer-based virtual reality simulator for ERCP. Gastrointest Endosc. 2010;71(2):357-64. [Crossref]  [PubMed]
  44. Van Sickle KR, Buck L, Willis R, Mangram A, Truitt MS, Shabahang M, et al. A multicenter, simulation-based skills training collaborative using shared GI Mentor II systems: results from the Texas Association of Surgical Skills Laboratories (TASSL) flexible endoscopy curriculum. Surg Endosc. 2011;25(9):2980-6. [Crossref]  [PubMed]
  45. Tian S, Shi H, Chen W, Li S, Han C, Du F, et al. Artificial intelligence-based diagnosis of standard endoscopic ultrasonography scanning sites in the biliopancreatic system: a multicenter retrospective study. Int J Surg. 2024;110(3):1637- 1644. [Crossref]  [PubMed]  [PMC]
  46. Goyal H, Sherazi SAA, Gupta S, Perisetti A, Achebe I, Ali A, et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: a systemic review. Therap Adv Gastroenterol. 2022;15:17562848221093873. [Crossref]  [PubMed]  [PMC]
  47. ASGE AI Task Force; Parasa S, Berzin T, Leggett C, Gross S, Repici A, Ahmad OF, et al. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology. Gastrointest Endosc. 2025;101(1):2-9.e1. [Crossref]  [PubMed]