ARTIFICIAL INTELLIGENCE (AI) IN SURGERY

Sadık Keşmer

Elazığ Fethi Sekin City Hospital, Department of Gastroenterological Surgery, Elazığ, Türkiye

Keşmer S. Artificial Intelligence (AI) in Surgery. Çaycı HM, ed. Artificial Intelligence (AI) in Gastrointestinal Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.11-21.

ABSTRACT

The integration of artificial intelligence (AI) and surgery is one of the biggest milestones in modern medicine. AI algorithms analyze a large range of data from medical imaging to patient records, enabling more accurate diagnosis, effective treatment, and optimized surgical planning. It also has the potential to support surgeons in complex processes such as identifying unidentified anatomical regions. AI integration, especially in robotic surgery systems, contributes significantly to the development of minimally invasive surgery by increasing surgical sensitivity, efficiency, and safety. However, AI comes with risks such as data privacy, algorithmic bias, lack of visibility, and ethical issues.

The contributions of AI to surgery may not be limited to during the operation. Factors such as operating room conditions, operating lights, insufflation pressures, table tilt, and temperature can be optimized with AI to improve the performance of the surgical team. In addition, AI-based systems can contribute at every stage from surgical planning to postoperative patient follow-up. In this way, complication risks can be predicted in advance and surgical processes can be made more efficient.

In the future, the development of autonomous surgical systems will be one of the most remarkable approaches of AI. Systems that work integrated with surgeons today have the potential to transform into fully autonomous surgical robots that can make independent decisions in the coming years. In particular, advances in haptic feedback technologies enable surgeons to feel the resistance of tissues, increasing the accuracy of operations. The sensitivity offered by AI in minimally invasive surgeries will increase patient satisfaction with smaller incisions and faster healing processes. The integration of AI and surgery will not only increase the precision of surgical procedures but also improve patient safety and the overall quality of healthcare. AI is shaping the future of surgery as a technology that reduces surgical risks, revolutionizes surgical education, and makes healthcare systems more accessible. However, more research and ethical debates are needed for this technology to become widespread.

Keywords: Artificial intelligence; Surgery; Robotic surgery; Autonomous; Deep learning; Minimally invasive

Referanslar

  1. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. Artificial intelligence and surgical decision-making. JAMA Surg. 2020;155(2):148-58. [Crossref]  [PubMed]  [PMC]
  2. Gumbs AA, Frigerio I, Spolverato G, Croner R, Illanes A, Chouillard E, et al. Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors. 2021;21(16):5526. [Crossref]  [PubMed]  [PMC]
  3. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70-6. [Crossref]  [PubMed]  [PMC]
  4. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol. 1973;46:1016-22. [Crossref]  [PubMed]
  5. Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807-12. [Crossref]  [PubMed]
  6. Iftikhar M, Saqib M, Zareen M, Mumtaz H. Artificial intelligence: revolutionizing robotic surgery: review. Ann Med Surg. 2024;86(9). [Crossref]  [PubMed]  [PMC]
  7. Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of robotic surgery: surgical and anaesthetic aspects. Br J Anaesth. 2017;119(Suppl 1):i72-84. [Crossref]  [PubMed]
  8. Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg. 2016;40(10):2550-7. [Crossref]  [PubMed]
  9. Vasey B, Lippert KAN, Khan DZ, Ibrahim M, Koh CH, Layard Horsfall H, et al. Intraoperative applications of artificial intelligence in robotic surgery: a scoping review of current development stages and levels of autonomy. Ann Surg. 2023;278(6):843-53. [Crossref]  [PubMed]  [PMC]
  10. Varghese C, Harrison E, O'Grady G. Artificial intelligence in surgery. Nat Med. 2024. [PubMed]
  11. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial Intelligence in Surgery: The Future is Now. Eur Surg Res. Published online January 22, 2024. [Crossref]  [PubMed]
  12. Reddy kalli V dinesh. Advancements in Deep Learning for Minimally Invasive Surgery: A Journey through Surgical System Evolution. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 [Internet]. 2024 May 5;4(1):111-20. [Crossref]
  13. Copeland BJ. Artificial intelligence. Encyclopedia Britannica. January 8, 2025. [Link]
  14. Mirnezami R, Ahmed A. Surgery 3.0, artificial intelligence and the next-generation surgeon. Br J Surg.2018;105(5):463-5. [Crossref]  [PubMed]
  15. Feng QX, Liu C, Qi L, Sun SW, Song Y, Yang G, et al. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer. J Am Coll Radiol. 2019;16(7):952-60. [Crossref]  [PubMed]
  16. Balch JA, Shickel B, Bihorac A, Upchurch GR, Loftus TJ. Integration of AI in surgical decision support: improving clinical judgment. Global Surg Educ. 2024;3(1):1-6. [Crossref]
  17. Knudsen JE, Umar Ghaffar, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg. 2024;18:102. [Crossref]  [PubMed]  [PMC]
  18. Rivas-Blanco CJ, Pérez-Del-Pulgar I, García-Morales V, Muñoz VF. A review on deep learning in minimally invasive surgery. IEEE Access. 2021;9:48658-48678. [Crossref]
  19. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24-9. [Crossref]  [PubMed]
  20. Litjens G, Kooi T, Bejnordi BE, Arindra A, Setio A, Ciompi F, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. [Crossref]  [PubMed]
  21. Namazi B, Sankaranarayanan G, Devarajan V. Automatic detection of surgical phases in laparoscopic videos. In: Proceedings of the International Conference on Artificial Intelligence (ICAI). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing; 2018:124-130. [Link]
  22. Hoy MB. Alexa, Siri, Cortana, and More: An Introduction to Voice Assistants. Med Ref Serv Q. 2018;37(1):81-8. [Crossref]  [PubMed]
  23. Gunaratnam C, Bernstein M. Factors affecting surgical decision-making: a qualitative study. Rambam Maimonides Med J. 2018;9(1):e0003. [Crossref]  [PubMed]  [PMC]
  24. Sengun B, Iscan Y, Yazici ZA, et al. Utilization of artificial intelligence in minimally invasive right adrenalectomy: recognition of anatomical landmarks with deep learning. Acta Chir Belg. 2024;124(6):492-498. [Crossref]  [PubMed]
  25. Xue B, Li D, Lu C, King CR, Wildes T, Avidan MS, Kannampallil T, Abraham J. Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw Open. 2021;4(3):e212240. [Crossref]  [PubMed]  [PMC]
  26. Yang GZ, Cambias J, Cleary K, et al. Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot. 2017;2(4):eaam8638. [Crossref]  [PubMed]
  27. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. [Crossref]  [PubMed]
  28. Leonard S, Wu KL, Kim Y, Krieger A, Kim PC. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305-1317. [Crossref]  [PubMed]
  29. Nadimpalli M. Artificial intelligence risks and benefits. Int J Innov Res Sci Eng Technol. 2017;6(6). [Link]
  30. Groh M, Badri O, Daneshjou R, Koochek A, Harris C, Soenksen LR, et al. Deep learning-aided decision support for diagnosis of skin disease across skin tones. Nat Med. 2024;30(2):573-83. [Crossref]  [PubMed]  [PMC]
  31. Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. arXiv. 2017. [Link]
  32. Bi W, Hosny A, Schabath M, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-57. [Crossref]  [PubMed]  [PMC]
  33. Hibner M. Robotic surgery - past, present and future. Wiad Lek. 2024;77(8). [Crossref]
  34. Liu J, Dong X, Yang Y, Chen H. Trajectory tracking control for uncertain robot manipulators with repetitive motions in task space. Math Probl Eng. 2021. [Crossref]
  35. Saeidi H, Opfermann JD, Kam M, Wei S, Leonard S, Hsieh MH, et al. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot. 2022;7(62):eabj2908. [Crossref]  [PubMed]  [PMC]
  36. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223-6. [Crossref]  [PubMed]
  37. Liow MHL, Chin PL, Pang HN, Tay DK, Yeo SJ. THINK surgical TSolution-One® (Robodoc) total knee arthroplasty. SICOT J. 2017;3:63. [Crossref]  [PubMed]  [PMC]
  38. Rose PT, Nusbaum B. Robotic hair restoration. Dermatol Clin. 2014;32(1):97-107. [Crossref]  [PubMed]
  39. Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR. The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010;9(5):433-52. [Crossref]  [PubMed]
  40. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. [Crossref]  [PubMed]
  41. Zhang R, Chen J, Wang Z, Yang Z, Ren Y, Shi P, et al. A step towards conditional autonomy: robotic appendectomy. IEEE Robot Autom Lett. 2023;8(5):2429-36. [Crossref]