ARTIFICIAL INTELLIGENCE (AI) IN THE MANAGEMENT OF PANCREATIC AND SPLENIC DISEASES
Mehmet Akif Türkoğlu
Gazi University Faculty of Medicine, Department of General Surgery, Ankara, Türkiye
Türkoğlu MA. Artificial Intelligence (AI) in the Management of Pancreatic and Splenic Diseases. Çaycı HM, ed. Artificial Intelligence (AI) in Gastrointestinal Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.101-111.
ABSTRACT
This comprehensive chapter explores the current applications and future potential of artificial intelligence (AI) in managing pancreatic and splenic diseases. In pancreatic diseases, AI has shown promising results in various aspects: predicting acute pancreatitis severity and complications with higher accuracy than traditional scoring systems; improving the diagnosis and staging of pancreatic ductal adenocarcinoma (PDAC) through enhanced imaging analysis; predicting postoperative outcomes and survival in pancreatic cancer patients; and risk-stratifying pancreatic cystic lesions. For pancreatic neuroendocrine tumors (PNETs), AI-powered radiomic analysis has demonstrated effectiveness in predicting tumor grades and potential outcomes. In splenic diseases, AI applications have primarily focused on automated spleen segmentation for accurate volume measurement in splenomegaly and improving the diagnosis of splenic trauma through ultrasound image analysis. Deep learning models, particularly convolutional neural networks (CNNs), have shown superior performance compared to traditional diagnostic methods across various applications. While these AI applications show great promise, most still require external validation with larger datasets before widespread clinical implementation. The integration of AI into clinical practice could significantly enhance diagnostic accuracy, improve risk stratification, and ultimately lead to better patient outcomes in pancreatic and splenic diseases.
Keywords: Artificial intelligence; Clinical decision support; Radiomics; Deep learning; Pancreatic diseases; Splenic diseases
Kaynak Göster
Referanslar
- Russel SJ, Norvig P. Artificial Intelligence: A Modern Approach, 3rd edn. Upper Saddle River, NJ: Prentice Hall, 2009. [Link]
- Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18:500-10. [Crossref] [PubMed]
- Hekler A, Utikal JS, Enk AH et al. Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images. Eur J Cancer 2019; 118: 91-6. [Crossref] [PubMed]
- Lee JG, Jun S, Cho YW et al. Deep Learning in Medical Imaging: General overview. Korean J Radiol 2017; 18: 570-84 PMID:28670152. [Crossref] [PubMed] [PMC]
- Burt JR, Torosdagli N, Khosravan N et al. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br J Radiol 2018;91:20170545 PMID:29565644. [Crossref] [PubMed]
- Andersson B, Andersson R, Ohlsson M, Nilsson J. Prediction of severe acute pancreatitis at admission to hospital using artificial neural networks. Pancreatology 2011;11:328-35 PMID:21757970. [Crossref] [PubMed]
- Pearce CB, Gunn SR, Ahmed A, Johnson CD. Machine learning can improve prediction of severity in acute pancreatitis using admission values of APACHE II score and C-reactive protein. Pancreatology 2006; 6: 123-31. [Crossref] [PubMed]
- Zhu J, Wang L, Chu Y, et al. A new descriptor for computer-aided diagnosis of EUS imaging to distinguish autoimmune pancreatitis from chronic pancreatitis. Gastrointest Endosc 2015; 82: 831-6. [Crossref] [PubMed]
- Mashayekhi R, Parekh VS, Faghih M, Singh VK, Jacobs MA, Zaheer A. Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis. Eur J Radiol 2020;123:108778. [Crossref] [PubMed] [PMC]
- Fei Y, Gao K, Li WQ. Prediction and evaluation of the severity of acute respiratory distress syndrome following severe acute pancreatitis using an artificial neural network algorithm model. HPB (Oxford) 2018;21:891-7. [Crossref] [PubMed]
- Fei Y, Hu J, Li WQ, Wang W, Zong GQ. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis. J Thromb Haemost 2017;15:439-45. [Crossref] [PubMed]
- Qiu Q, Nian YJ, Tang L et al. Artificial neural networks accurately predict intra-abdominal infection in moderately severe and severe acute pancreatitis. J Dig Dis 2019;20:486-94 PMID:31328389. [Crossref]
- Qiu Q, Nian YJ, Guo Y et al. Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis. BMC Gastroenterol 2019;19:118. [Crossref] [PubMed]
- Hong WD, Chen XR, Jin SQ, Huang QK, Zhu QH, Pan JY. Use of an artificial neural network to predict persistent organ failure in patients with acute pancreatitis. Clinics 2013;68:27-31. [Crossref] [PubMed]
- Mofidi R, Duff MD, Madhavan KK, Garden OJ, Parks RW. Identification of severe acute pancreatitis using an artificial neural network. Surgery 2007;141:59-66. [Crossref] [PubMed]
- Halonen KI, Leppäniemi AK, Lundin JE, Puolakkainen PA, Kemppainen EA, Haapiainen RK. Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology 2003;3:309-15. [Crossref] [PubMed]
- Keogan MT, Lo JY, Freed KS et al. Outcome analysis of patients with acute pancreatitis by using an artificial neural network. Acad Radiol 2002;9:410-9 PMID:11942655. [Crossref] [PubMed]
- Gai T, Thai T, Jones M, Jo J, Zheng B. Applying a radiomics-based CAD scheme to classify between malignant and benign pancreatic tumors using CT images. J. X-ray Sci. Technol. 2022,30,377-388 PMID: 35095015. [Crossref] [PubMed]
- Ziegelmayer S, Kaissis G, Harder F, Jungmann F, Müller T, Makowski M, Braren R. Deep Convolutional Neural NetworkAssisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP). J. Clin. Med. 2020,9,4013. [Crossref] [PubMed] [PMC]
- Zhang Y, Lobo-Mueller EM, Karanicolas P, Gallinger S, Haider MA, Khalvati F. Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images. Sci. Rep. 2021;11:1378. [Crossref] [PubMed] [PMC]
- Liu SL, Li S, Guo YT et al. Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network. Chin Med J 2019;132:2795-803. [Crossref] [PubMed]
- Chu LC, Park S, Kawamoto S et al. Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am J Roentgenol 2019;213:349-57 PMID: 31012758. [Crossref] [PubMed]
- Gao X, Wang X. Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study. Diagn Interv Imaging 2020;101:91-100. [Crossref] [PubMed]
- Tong T, Gu J, Xu D, Song L, Zhao Q, Cheng F, Yuan Z, Tian S, Yang X, Tian J, et al. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med. 2022,20,74. [Crossref] [PubMed]
- Das A, Nguyen CC, Li F, Li B. Digital image analysis of EUS images accurately differentiates pancreatic cancer from chronic pancreatitis and normal tissue. Gastrointest Endosc 2008;67:861-7. [Crossref] [PubMed]
- Zhu M, Xu C, Yu J et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images: A diagnostic test. PLoS One 2013;8:e63820. [Crossref] [PubMed] [PMC]
- Saftoiu A, Vilmann P, Dietrich CF et al. Quantitative contrast-enhanced harmonic EUS in the differential diagnosis of focal pancreatic masses (with videos). Gastrointest Endosc 2015;82:59-69 PMID:25792386. [Crossref]
- Saftoiu A, Vilmann P, Gorunescu F et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc 2008;68:1086-94. [Crossref] [PubMed]
- Saftoiu A, Vilmann P, Gorunescu F et al. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin Gastroenterol Hepatol 2012;10:84-90. [Crossref] [PubMed]
- Gu J, Pan J, Hu J, et al. Prospective assessment of pancreatic ductal adenocarcinoma diagnosis from endoscopic ultrasonography images with the assistance of deep learning. Cancer. 2023;129(14):2214-2223. [Crossref] [PubMed]
- Blyuss O, Zaikin A, Cherepanova V, et al. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br J Cancer. 2020;122(5):692-696. [Crossref] [PubMed] [PMC]
- Kaissis G, Ziegelmayer S, Lohöfer F, et al. A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging. Eur Radiol Exp 2019;3:1-9 PMID:31624935. [Crossref] [PMC]
- Li K, Xiao J, Yang J et al. Association of radiomic imaging features and gene expression profile as prognostic factors in pancreatic ductal adenocarcinoma. Am J Transl Res 2019; 11: 4491-9. [PMC] [PubMed]
- Kambakamba P, Mannil M, Herrera PE, et al. The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study. Surgery. 2020;167(2):448-454. [Crossref] [PubMed]
- Chang J, Liu Y, Saey SA, et al. Machine-learning based investigation of prognostic indicators for oncological outcome of pancreatic ductal adenocarcinoma. Front Oncol. 2022;12:895515. Published 2022 Dec 8. [Crossref] [PubMed]
- Xie T, Wang X, Li M, Tong T, Yu X, Zhou Z. Pancreatic ductal adenocarcinoma: a radiomics nomogram outperforms clinical model and TNM staging for survival estimation after curative resection. Eur Radiol. 2020;30(5):2513-2524 PMID:32006171. [Crossref]
- Chakraborty J, Langdon-Embry L, Cunanan KM, et al. Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PLoS One. 2017;12(12):e0188022. Published 2017 Dec 7. [Crossref] [PubMed] [PMC]
- Attiyeh MA, Chakraborty J, Doussot A et al. Survival prediction in pancreatic ductal adenocarcinoma by quantitative computed tomography image analysis. Ann. Surg. Oncol. 2018;25:1034-42. [Crossref] [PubMed]
- Yun G, Kim YH, Lee YJ, Kim B, Hwang J-H, Choi DJ. Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci. Rep. 2018; 8: 7226. [Crossref] [PubMed]
- Rizzo S, Botta F, Raimondi S et al. Radiomics: the facts and the challenges of image analysis. Eur. Radiol. Exp. 2018; 2:36. [Crossref] [PubMed] [PMC]
- Alva-Ruiz R, Yohanathan L, Yonkus JA, et al. Neoadjuvant Chemotherapy Switch in Borderline Resectable/ Locally Advanced Pancreatic Cancer. Ann Surg Oncol. 2022;29(3):1579-1591. [Crossref] [PubMed] [PMC]
- Al Abbas, A.I.; Zenati, M.; Reiser, C.J.; Hamad, A.; Jung, J.P.; Zureikat, A.H.; Zeh, H.J.; Hogg, M.E. Serum CA19-9 Response to Neoadjuvant Therapy Predicts Tumor Size Reduction and Survival in Pancreatic Adenocarcinoma. Ann. Surg. Oncol. 2020, 27, 2007-2014. [Crossref] [PubMed] [PMC]
- Machado, N.; al Qadhi, H.; al Wahibi, K. Intraductal papillary mucinous neoplasm of pancreas. N. Am. J. Med. Sci. 2015;7:160-175. [Crossref] [PubMed] [PMC]
- Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol 2018;18:24. [Crossref] [PubMed] [PMC]
- Hayward J, Alvarez SA, Ruiz C, Sullivan M, Tseng J, Whalen G. Machine learning of clinical performance in a pancreatic cancer database. Artif Intell Med 2010;49:187-95 PMID: 20483571. [Crossref]
- Walczak S, Velanovich V. An evaluation of artificial neural networks in predicting pancreatic cancer survival. J Gastrointest Surg 2017;21:1606-12 PMID:28776157. [Crossref]
- Canellas R, Burk KS, Parakh A, Sahani DV. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. AJR Am. J. Roentgenol. 2018;210:341-6. [Crossref] [PubMed]
- Guo C, Zhuge X, Wang Z et al. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: association with WHO grade. Abdom. Radiol. (NY) 2019;44:576-85. [Crossref] [PubMed]
- Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J. Radiol. 2019; 20: 1124-37. [Crossref] [PubMed]
- Liang W, Yang P, Huang R et al. A combined nomogram model to preoperatively predict histologic grade in pancreatic neuroendocrine tumors. Clin. Cancer Res. 2019; 25: 584-94. [Crossref] [PubMed]
- Gu D, Hu Y, Ding H et al. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: a multicenter study. Eur. Radiol. 2019; 29: 6880-90. [Crossref] [PubMed]
- Bian Y, Zhao Z, Jiang H et al. Noncontrast radiomics approach for predicting grades of nonfunctional pancreatic neuroendocrine tumors. J. Magn. Reson. Imaging 2020;52: 1124-36. [Crossref] [PubMed] [PMC]
- Facciorusso A, Kovacevic B, Yang D, et al. Predictors ofadverse events after endoscopic ultrasound-guided throughthe-needle biopsy of pancreatic cysts: a recursive partitioning analysis. Endoscopy. 2022;54(12):1158-1168. [Crossref] [PubMed]
- Kuwahara T, Hara K, Mizuno N, et al. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clin Transl Gastroenterol. 2019;10(5):1-8. [Crossref] [PubMed]
- Hsiao CY, Yang CY, Wu JM, Kuo TC, Tien YW. Utility of the 2006 Sendai and 2012 Fukuoka guidelines for the management of intraductal papillary mucinous neoplasm of the pancreas: A single-center experience with 138 surgically treated patients. Medicine (Baltimore). 2016;95(38):e4922. [Crossref] [PubMed] [PMC]
- Corral JE, Hussein S, Kandel P, Bolan CW, Bagci U, Wallace MB. Deep learning to classify intraductal papillary mucinous neoplasms using magnetic resonance imaging. Pancreas 2019; 48: 805-10. [Crossref] [PubMed]
- Chakraborty J, Midya A, Gazit L et al. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med. Phys. 2018; 45: 5019-29. [Crossref] [PubMed] [PMC]
- Huang C, Chopra S, Bolan CW, et al. Pancreatic Cystic Lesions: Next Generation of Radiologic Assessment. Gastrointest Endosc Clin N Am. 2023;33(3):533-546. [Crossref] [PubMed]
- Liang W, Tian W, Wang Y, et al. Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models. BMC Cancer. 2022;22(1):1237. Published 2022 Nov 29. [Crossref] [PubMed] [PMC]
- Yang J, Guo X, Ou X, Zhang W, Ma X. Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning. Front. Oncol. 2019;9:494. [Crossref] [PubMed] [PMC]
- Perez AA, Noe-Kim V, Lubner MG, Somsen D, Garrett JW, Summers RM, et al. Automated Deep Learning Artificial Intelligence Tool for Spleen Segmentation on CT: Defining Volume-Based Thresholds for Splenomegaly. AJR Am J Roentgenol. 2023 Nov;221(5):611-619. Epub 2023. [Crossref] [PubMed]
- Jiang X, Luo Y, He X, Wang K, Song W, Ye Q, et al. Development and validation of the diagnostic accuracy of artificial intelligence-assisted ultrasound in the classification of splenic trauma. Ann Transl Med. 2022 Oct;10(19):1060. [Crossref] [PubMed] [PMC]
- Strijk SP, Wagener DJ, Bogman MJ, de Pauw BE, Wobbes T. The spleen in Hodgkin disease: diagnostic value of CT. Radiology 1985;154:753-757 PMID: 3969481. [Crossref]
- Lee S, Elton DC, Yang AH, et al. Fully automated and explainable liver segmental volume ratio and spleen segmentation at CT for diagnosing cirrhosis. Radiol Artif Intell 2022; 4:e210268 PMID:36204530. [Crossref] [PubMed] [PMC]
- Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of medical imaging data. arXiv website. arxiv.org/abs/1701.03056. Last revised Jul 25, 2017. Accessed Dec 7, 2020 [Link]
- Pickhardt PJ, Malecki K, Hunt OF, et al. Hepatosplenic volumetric assessment at MDCT for staging liver fibrosis. Eur Radiol 2017; 27:3060-3068 PMID:27858212. [Crossref] [PubMed]
- Akkus Z, Cai J, Boonrod A, et al. A Survey of Deep Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. J Am Coll Radiol 2019;16:1318-28. [Crossref] [PubMed]