ARTIFICIAL INTELLIGENCE ASSISTED ENDODONTIC TREATMENTS

Parla Meva Durmazpınar

İstanbul Marmara University, Faculty Dentistry, Department of Endodontics, İstanbul, Türkiye

Durmazpınar PM. Artificial Intelligence Assisted Endodontic Treatments. In: Kul E, editor. Perspectives on Digital Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.6776.

ABSTRACT

Artificial intelligence (AI) is a rapidly developing field of computer science that mimics the functions of human intelligence such as problem solving, analysis and decision making. The role of AI has become increasingly prominent in the healthcare field, especially in dentistry branches such as end odontics. Technologies such as deep learning (Dl) and artificial neural networks provide significant improvements in clinical processes such as detection of periapical lesions, determination of root canal anatomy and identification of cracks by analyzing complex structures in Xray images. One of the most important contributions of AI in endodontics is its integration into clinical decision support systems. These systems, which optimize treatment processes by increasing diagnostic accuracy, reduce the error rate by capturing details that may escape the attention of clinicians. likewise, AI algorithms improve patient satisfaction by offering higher precision and speed in complex procedures such as root canal shaping and filling. These processes not only save time, but also enable the development of personal ized treatment approaches. Advanced applications such as roboticassisted surgery are also among the contributions of AI to endodontic treatments. These technologies, which increase patient comfort with minimally invasive methods, also increase clinical success rates. However, there are some challenges such as data confidentiality, lack of quality data sets and generalizability of models, integration of these technologies into daily clinical practice, which make it difficult for AI to become widespread in the healthcare sector.

This chapter, which addresses the current and potential applications of AI in endodontics, evaluates the effective ways of using the technology and the processes of integration into clinical practice. In addition, the development of training programs to increase physicians’ confidence in AI and consid eration of ethical issues are critical to increase the effectiveness of the technology. This chapter aims to comprehensively evaluate the current and potential applications of AI technologies in the field of endodontics. Another goal is to examine the effectiveness of AI in clinical diagnosis, treatment plan ning and processes and to reveal how these technologies can be integrated into daily clinical practice. Recommendations will also be made to raise awareness of the ethical, legal and technical challenges of AI in endodontic practice and to increase clinicians’ confidence in these technologies. Within this scope, it is emphasized that with the correct use of AI, revolutionary improvements in both patient care and clinical outcomes can be achieved.

Keywords: Artificial intelligence; Deep learning; Endodontics; Machine learning

Referanslar

  1. Education IC Artificial Intelligence (AI). February 13, 2025. [Link]
  2. Umer F, Habib S. Critical analysis of artificial intelligence in endodontics: a scoping review. J Endod. 2021;48(2):152-160. [Crossref]  [PubMed]
  3. Bender I. Factors influencing radiographic appearance of bony lesions. J Endod. 1997;23(1):5-14. [Crossref]  [PubMed]
  4. Murphy M, Killen C, Burnham R, Sarvari F, Wu K, Brown N. Artificial intelligence accurately identifies total hip arthroplasty implants: a tool for revision surgery. HIP Int. 2022;32(6):766-770. [Crossref]  [PubMed]
  5. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism 2017;69:36-40. [Crossref]  [PubMed]
  6. Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 2020;471:61-71. [Crossref]  [PubMed]
  7. Samorani M, Blount LG. Machine learning and medical appointment scheduling: creating and perpetuating inequalities in access to health care. Am J Public Health. 2020;110(4):440-1. [Crossref]  [PubMed]  [PMC]
  8. Shtar G, Rokach L, Shapira B. Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures. PLoS One 2019;14:e0219796. [Crossref]  [PubMed]  [PMC]
  9. Bhandari M, Zeffiro T, Reddiboina M. Artificial intelligence and robotic surgery: current perspective and future directions. Curr Opin Urol. 2020;30(1):48-54. [Crossref]  [PubMed]
  10. Barry DT. Adaptation, artificial intelligence, and physical medicine and rehabilitation. PM&R. 2018;10(9):131-43. [Crossref]  [PubMed]
  11. Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 2018;8(2):e018815. [Crossref]  [PubMed]  [PMC]
  12. Aminoshariae A, Kulild J, Nagendrababu V. Artificial intelligence in endodontics: current applications and future directions. J Endod. 2021;47(9):1352-1357. [Crossref]  [PubMed]
  13. Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, et al. Artificial intelligence: a powerful paradigm for scientific research. Inno¬vation (Camb) 2021;2(4): 100179. [Crossref]  [PubMed]  [PMC]
  14. Ahmed, ZH, Almuharib A, Abdulkarim, AA, Alhassoon AH, Alanazi AF, Alhaqbani MA, et al. Artificial intelligence and its application in endodontics: a review. JCDP.2024;24(11):912-917. [Crossref]  [PubMed]
  15. Parinitha MS, Doddawad VG, Kalgeri SH, Gowda SS, Patil S. Impact of artificial intelligence in endodontics: precision, predictions, and prospects. J Med Signals sens. 2024;14(9): [Crossref]  [PubMed]  [PMC]
  16. Ourang SA, Sohrabniya F, Mohammad-Rahimi H, Dianat O, Aminoshariae A, Nagendrababu V, et al. Artificial intelligence in endodontics: Fundamental principles, workflow, and tasks. Int. Endod. J. 2024;57(11).1546-1565. [Crossref]  [PubMed]
  17. Kavzoglu T. Determining optimum structure for artificial neural networks. In: Proceedings of the 25th Annual Technical Conference and Exhibition of the Remote Sensing Society. Citeseer, Cardiff, UK.1999:675-682. [Link]
  18. Wu J. Introduction to convolutional neural networks. Natl Key Lab Novel Softw Technol Nanjing Univ China. 2017;5(23):495. [Link]
  19. Goldman M, Pearson A, Darzenta N. Endodontic success-who's reading the radiograph? Oral Surg. 1972;32(3):432-437. [Crossref]  [PubMed]
  20. Chapman MN, Nadgir RN, Akman AS, Saito N, Sekiya K, Kaneda T, et al. Periapical lucency around the tooth: radiologic evaluation and differential diagnosis. RadioGraphics 2013;33(1):15-32. [Crossref]  [PubMed]
  21. Velvart P, Hecker H, Tillinger G. Detection of the apical lesion and the mandibular canal in conventional radiography and computed tomography. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2001;92(6):682-688. [Crossref]  [PubMed]
  22. Patel S, Dawood A, Mannocci F, Wilson R, Ford T. Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography. Int Endod J. 2009;42(6):507-515. [Crossref]  [PubMed]
  23. Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela Oet al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics. 2020;10(6):430. [Crossref]  [PubMed]  [PMC]
  24. Issa J, Jaber M, Rifai I, Mozdziak P, Kempisty B, DyszkiewiczKonwińska M. Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review. Medicina (B Aires) 2023;59(4):768. [Crossref]  [PubMed]  [PMC]
  25. Setzer F, Shi K, Zhang Z, Yan H, Yoon H, Mupparapu M et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod. 2020;46(7):987-993. [Crossref]  [PubMed]
  26. Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53(5):680-689. [Crossref]  [PubMed]
  27. Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, et al. Artificial intelligence ingastroenterology: A state of the art review. World J Gastroenterol 2021;27:6794  [Crossref]  [PubMed]  [PMC]
  28. Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: An ex vivo study. Dentomaxillofac Radiol. 2017;46:20160107. http:// [Crossref]  [PubMed]  [PMC]
  29. Marwaha J. Artificial intelligence in conservative dentistry and endodontics: a game-changer. J Conserv Dent Endod 2023;26:514-8. [Link]
  30. Hao J, Liao W, Zhang YL, Peng J, Zhao Z, Chen Z, et al. Toward clinically applicable 3-dimensional tooth segmentation via deep learning. J Dent Res. 2022;101(3):304-11. [Crossref]  [PubMed]
  31. Kang DY, Duong HP, Park JC. Application of deep learning in dentistry and implantology. J Implantol Appl Sci. 2020;24(3):148-81. [Crossref]
  32. Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw tumors. Healthc Inform Res. 2018;24(3):236-41. [Crossref]  [PubMed]  [PMC]
  33. Revilla-León M, Gómez-Polo M, Vyas S, Barmak BA, Galluci GO, Att W, et al. Artificial intelligence applications in implant dentistry: a systematic review. J Prosthet Dent 2023;12982):293-300. [Crossref]  [PubMed]
  34. Jeon S-J, Yun J-P, Yeom H-G, Shin WS, Lee JH, Jeong SH et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofac Radiol. 2021;50(5):20200513. [Crossref]  [PubMed]  [PMC]
  35. Sherwood AA, Sherwood AI, Setzer FC, Shamili, JV, John C, Schwendicke FA. deep learning approach to segment and classify c-shaped anal morphologies in mandibular second molars using cone-beam computed tomography. J Endod. 2021;47(12):907-1916. [Crossref]  [PubMed]
  36. Khanagar SB, Al‑Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry-A systematic review. J Dent Sci. 2021;16(1):508‑22. [Crossref]  [PubMed]  [PMC]
  37. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: Current applications and future perspectives. Quintessence Int. 2020;51(3):248‑57. [Crossref]
  38. Petersson A, Axelsson S, Davidson T, Frisk F, Hakeberg, M, Kvist T. Radiological diagnosis of periapical bone tissue lesions in endodontics: a systematic review. Int. Endod. J. 2012;45(9):783-801. [Crossref]  [PubMed]
  39. Tewary S, Luzzo J, Hartwell G. Endodontic radiography: who is reading the digital radiograph? J Endod 2011;37(7):919-21. [Crossref]  [PubMed]
  40. Saghiri MA, Asgar K, Boukani KK, Lotfi M, Aghili H, Delvarani A, et al. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 2012;45:257-65. [Crossref]  [PubMed]
  41. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi, M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod. 2012;38(8):1130-4. [Crossref]  [PubMed]
  42. Talwar S, Utneja S, Nawal RR, Kaushik A, Srivastava D Oberoy, SS. Role of cone-beam computed tomography in diagnosis of vertical root fractures: a systematic review and meta-analysis. J Endod 2016;42(1):12-24. [Crossref]  [PubMed]
  43. PradeepKumar AR, Shemesh H, Nivedhitha MS, Hashir MMJ, Arockiam S, Maheswari TNU et al. Diagnosis of vertical root fractures by cone-beam computed tomography in root-filled teeth with confirmation by direct visualization: a systematic review and meta-analysis. J Endod. 2021;47(8):1198-1214. [Crossref]  [PubMed]
  44. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337-43. [Crossref]  [PubMed]
  45. Asiri AF, Altuwalah AS. The role of neural artificial intelligence for diagnosis and treatment planning in endodontics: a qualitative review. Saudi Dent J. 2022;34(4):270-281. [Crossref]  [PubMed]  [PMC]
  46. Lai G, Dunlap C, Gluskin A, Nehme WB, Azim AA. Artificial intelligence in endodontics. CDA Journal. 2023;51(1):2199933. [Crossref]
  47. Bindal P, Bindal U, Lin CW, Kasim NH, Ramasamy TS, Dabbagh A, et al. Neuro-fuzzy method for predicting the viability of stem cells treated at different time-concentration conditions. Technol Health Care. 2017;25(6):1041-51. [Crossref]  [PubMed]
  48. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Ger¬ven A, et al. Artificial intelligence for fast and accurate 3-dimen-sional tooth segmentation on cone-beam computed tomography. J Endod 2021;47(5):827-35. [Crossref]  [PubMed]
  49. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar boneloss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H-value of fractional Brownian motion model. Comput Methods Programs Biomed. 2015;121(3):117-26. [Crossref]  [PubMed]
  50. Campo L, Aliaga IJ, De Paz JF, García AE, Bajo, J, Villarubia G, et al. Retreatment predictions in odontology by means of CBR systems. Comput Intell Neurosci. 2016;1:7485250. [Crossref]  [PubMed]  [PMC]
  51. Ramezanzade S, Laurentiu T, Bakhshandah A, Ibragimov B, Kvist T, EndoReCo, et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments-a systematic review. Acta Odontol. Scand.2023;81(6):422-435. [Crossref]
  52. Nosrat A, Dianat O, Verma P, Nixdorf DR, Law AS. Postoperative pain: an analysis on evolution of research in half-century. J Endod. 2021;47(3):358-365. [Crossref]  [PubMed]
  53. Mohammad-Rahimi H, Sohrabniya F, Ourang SA, Dianat O, Aminoshariae A, Nagendrababu V, et al. Artificial intelligence in endodontics: Data preparation, clinical applications, ethical considerations, limitations, and future directions. Int. Endod. J. 2024;57(11):1566-1595. [Crossref]  [PubMed]
  54. Nosrat A, Valancius M, Mehrzad S, Dianat O, Verma P, Aminoshariae A, et al. Flare-ups after nonsurgical retreatments: incidence, associated factors, and prediction. J Endod. 2023;49(10):1299-1307. [Crossref]  [PubMed]
  55. Gao X, Xin X, Li Z, Zhang W. Predicting postoperative pain following root canal treatment by using artificial neural network evaluation. Sci. Rep. 2021;11(1):17243. [Crossref]  [PubMed]  [PMC]
  56. Naghshbandi T, Behnam, Zeynab A. A Comprehensive Review of the Convergence of Artificial Intelligence and Cone Beam Computed Tomography in Endodontics: Advancements in Diagnostic and Therapeutic Success. Winter And Spring. 2024;36:13-28. [Link]
  57. Dash S, Acharya BR, Mittal M, Abraham A, Kelemen A. Deep learning techniques for biomedical and health informatics. Cham, Switzerland: Springer International Publishing;2020. [Crossref]  [PMC]
  58. Sebring D, Buhlin K, Norhammar A, Rydén L, Jonasson P, EndoReCo, et al. Endodontic inflammatory disease: a risk indicator for a first myocardial infarction. Int Endod J. 2022;55(1):6-17. [Crossref]  [PubMed]
  59. Krois J, Garcia Cantu A, Chaurasia A, Patil R, Chaudhari PK, Gaudin R, et al. Generalizability of deep learning models for dental image analysis. Sci Rep. 2021;11(1):6102. [Crossref]  [PubMed]  [PMC]
  60. Leung T, Vyas D. Robotic surgery: applications. Am J Rob Surg.2014;1(1):38-41. [Crossref]
  61. Bolding S, Reebye U. Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches. J Prosthet Dent. 2021;128(4):639-647. [Crossref]  [PubMed]
  62. Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. Am J Rob Surg. 2014;1(1):12-20. [Crossref]  [PubMed]  [PMC]
  63. Babeer A, Oh MJ, Ren Z, Liu Y, Marques F, Poly A, et al. Microrobotics for precision biofilm diagnostics and treatment. J Dent Res. 2022;101(9):1009-1014. [Crossref]  [PubMed]  [PMC]
  64. Sjögren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16(10):498-504. [Crossref]  [PubMed]
  65. Brodie A, Vasdev P. The future of robotic surgery. Ann R Coll Surg Engl. 2018;100(7):4-13. [Crossref]  [PubMed]  [PMC]
  66. Chautems C, Zeydan B, Charreyron S, Chatzipirpiridis G, Pané S, Nelson BJ. Magnetically powered microrobots: a medical revolution underway? Eur J Cardiothorac Surg. 2017;51(3):405-407. [Crossref]  [PubMed]