ASSOCIATED COFACTORS AND COMORBID CONDITIONS

Selma Alim Aydın

Sivas Numune Hospital, Department of Pediatric Immunology and Allergic Diseases, Sivas, Türkiye

Alim Aydın S. Associated Cofactors and Comorbid Conditions. In: Harmancı K, editor. Childhood Anaphylaxis: New Developments in Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.285-296.

ABSTRACT

Cofactors: A variety of cofactors have been identified that contribute to the development and exacerbation of anaphylaxis by increasing clinical severity and lowering the threshold for allergic reactions. These cofactors are thought to sensitize individuals to smaller quantities of allergens and thus play a critical role in the pathophysiology. The relevant cofactor may differ across individuals. Among the identified cofactors are physical exertion, infections, nonsteroidal anti-inflammatory drugs (NSAID) use, alcohol consumption, fever, cold exposure, emotional stress, travel and the premenstrual period. Exercise is hypothesized to enhance anaphylactic responses by increasing the bioavailability of specific allergens and lowering the activation threshold of mast cells and basophils. Infections may promote mast cell activation by modulating immune function. NSAIDs and alcohol have been shown to increase gastrointestinal permeability, facilitating the absorption of larger, more allergenic molecules. Moreover, suppression of gastric acid secretion by H2 receptor antagonists and proton pump inhibitors (PPIs) may interfere with the inactivation of ingested allergens, thereby enhancing their allergenic potential. Comorbid Conditions: Comorbid diseases and concurrent pharmacological therapies have been shown to significantly influence the clinical manifestations, severity and treatment response in anaphylactic episodes. Asthma, cardiovascular disorders, mastocytosis and along with the intake of certain pharmacological agents are recognized as key variables influencing clinical outcomes. Among these, asthma has been most frequently associated with a heightened risk of severe manifestations. Poorly controlled or severe forms of asthma are particularly linked to life-threatening reactions. Additional atopic conditions, particularly atopic dermatitis, pollen sensitization and pollen-food syndrome have been implicated in both the severity and recurrence of food-induced anaphylaxis. Atopic diseases have been associated with an increased risk of reactions triggered by non-food stimuli, such as physical exertion and latex exposure. Cardiovascular disease is considered a risk factor for fatal anaphylaxis, particularly among middle-aged and older individuals. Genetic factors such as polymorphisms in the angiotensin-converting enzyme (ACE) gene, individual variability in bradykinin metabolism and elevated baseline levels of serum tryptase and plasma histamine are considered important determinants of anaphylaxis severity in pediatric populations. In mast cell disorders, both the incidence of hypersensitivity reactions and the likelihood of severe or fatal outcomes are markedly elevated. The concomitant use of beta-blockers and ACE inhibitors has been shown to compromise compensatory responses following anaphylaxis and reduce the clinical effectiveness of epinephrine therapy. Certain medications used in the treatment of attention deficit hyperactivity disorder (ADHD) and depression may induce effects during anaphylactic reactions that resemble the side effects of epinephrine.

Keywords: Anaphylaxis; Child; Cofactors; Comorbid conditions

Referanslar

  1. Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World Allergy Organization anaphylaxis guidance 2020 [Crossref]  [PubMed]  [PMC]
  2. Muraro A, Worm M, Alviani C, Cardona V, DunnGalvin A, Garvey LH, et al. European Academy of Allergy and Clinical Immunology, Food Allergy, Anaphylaxis Guidelines Group; EAACI guidelines: Anaphylaxis (2021 update). Allergy. 2022;77(2):357-377. [Crossref]  [PubMed]
  3. Wang J. Anaphylaxis: Assessment and Management. In: Leung DYM, Akdis CA, Bacharier LB, Cunningham-Rundles C, Sicherer SH, Sampson HA, eds. Pediatric Allergy: Principles and Practice. 4th ed. Philadelphia, PA: Elsevier; 2021:387-399. Accessed July 12, 2025.
  4. Dreskin SC, Stitt JM. Anaphylaxis. In: Burks AW, O'Heir RE, Broide DH, Holgate ST, Bacharier LB, Khurana Hershey GK, Peebles RS, eds. Middleton's Allergy: Principles and Practice. 9th ed. Philadelphia, PA: Elsevier; 2020:1228- 1246. Accessed July 12, 2025.
  5. Golden DBK, Wang J, Waserman S, Akin C, Campbell RL, Ellis AK, et al. Anaphylaxis: A 2023 practice parameter update. Allergy Asthma Immunol. 2024;132(2):124-176. [Crossref]  [PubMed]
  6. Kraft M, Scherer Hofmeier K, Ruëff F, Pföhler C, Renaudin JM, Bilò MB, et al. Risk Factors and Characteristics of Biphasic Anaphylaxis. Allergy Clin Immunol Pract. 2020;8(10):3388-3395. [Crossref]  [PubMed]
  7. Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68(9):1085-1092. [Crossref]  [PubMed]
  8. Simons FE. Anaphylaxis. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S161-S181. [Crossref]  [PubMed]
  9. Worm M, Francuzik W, Renaudin JM, Bilo MB, Cardona V, Scherer Hofmeier K, et al. Factors increasing the risk for a severe reaction in anaphylaxis: An analysis of data from The European Anaphylaxis Registry. Allergy.2018;73(6):1322-1330. [Crossref]  [PubMed]
  10. Simons FER, Sampson HA. Anaphylaxis: Unique aspects of clinical diagnosis and management in infants (birth to age 2 years). J Allergy Clin Immunol 2015;135(5):1125-1131. [Crossref]  [PubMed]
  11. Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, et al. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy. 2015;70(10):1212-1221. [Crossref]  [PubMed]
  12. Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, et al. Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis. Clin Exp Allergy. 2005;35(4):461466. [Crossref]  [PubMed]
  13. Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol. 2008;121(6):1301-1308. [Crossref]  [PubMed]  [PMC]
  14. Ramírez E, Cabañas R, Laserna LS, Fiandor A, Tong H, Alim Aydın Associated Cofactors and Comorbid Conditions Prior N, et al. Proton pump inhibitors are associated with hypersensitivity reactions to drugs in hospitalized patients: a nested case-control in a retrospective cohort study. Clin Exp Allergy. 2013;43(3):344-352. [Crossref]  [PubMed]
  15. Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol. 2015;135(3):729-736. [Crossref]  [PubMed]  [PMC]
  16. Motosue MS, Bellolio MF, Van Houten HK, Shah ND, Campbell RL. Risk factors for severe anaphylaxis in the United States. Ann Allergy Asthma Immunol. 2017;119(4):356-361. [Crossref]  [PubMed]
  17. Simons FER. Anaphylaxis, killer allergy: long-term management in the community. J Allergy Clin Immunol. 2006;117(2):367-377. [Crossref]  [PubMed]
  18. Turner PJ, Gowland MH, Sharma V, Ierodiakonou D, Harper N, Garcez T, et al. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992-2012. J Allergy Clin Immunol. 2015;135(4):956-963. [Crossref]  [PubMed]  [PMC]
  19. Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001;107(1):191-193. [Crossref]  [PubMed]
  20. Calvani M, Cardinale F, Martelli A, Muraro A, Pucci N, Savino F, et al. Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr Allergy Immunol. 2011;22(8):813-819. [Crossref]  [PubMed]
  21. Olabarri M, Vazquez P, Gonzalez-Posada A, Sanz N, Gonzalez-Peris S, Diez N, et al. Risk factors for severe anaphylaxis in children. J Pediatr. 2020;225:193-197. [Crossref]  [PubMed]
  22. Turner PJ, Campbell DE. Epidemiology of severe anaphylaxis: can we use population-based data to understand anaphylaxis? Curr Opin Allergy Clin Immunol. 2016;16(5):441450. [Crossref]  [PubMed]  [PMC]
  23. De Filippo M, Votto M, Albini M, Castagnoli R, De Amici M, Marseglia A, et al. Pediatric anaphylaxis: a 20-year retrospective analysis. J Clin Med. 2022;11(18):5285. [Crossref]  [PubMed]  [PMC]
  24. González-Pérez A, Aponte Z, Vidaurre CF, Rodríguez LA. Anaphylaxis epidemiology in patients with and without asthma: a United Kingdom database review. J Allergy Clin Immunol. 2010;125(5):1098-1104. [Crossref]  [PubMed]
  25. Orhan F, Canitez Y, Bakirtas A, Yilmaz O, Boz AB, Can D, et al. Anaphylaxis in Turkish children: a multi-centre, retrospective, case study. Clin Exp Allergy. 2011;41(12):17671776. [Crossref]  [PubMed]
  26. Wang Y, Allen KJ, Suaini NHA, McWilliam V, Peters RL, Koplin JJ. The global incidence and prevalence of ana phylaxis in children in the general population: A systematic review. Allergy. 2019;74(6):1063-1080. [Crossref]  [PubMed]
  27. Tejedor-Alonso MA, Moro-Moro M, Múgica-García MV. Epidemiology of anaphylaxis: Contributions from the last 10 years. J Investig Allergol Clin Immunol. 2015;25(3):163175.
  28. Grabenhenrich LB, Dölle S, Moneret-Vautrin A, Köhli A, Lange L, Spindler T, et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137(4):1128-1137. [Crossref]  [PubMed]
  29. Vezir E, Erkoçoğlu M, Kaya A, Toyran M, Özcan C, Akan A, et al. Characteristics of anaphylaxis in children referred to a tertiary care center. Allergy Asthma Proc. 2013;34(3):239246. [Crossref]  [PubMed]
  30. Mullins RJ. Anaphylaxis: risk factors for recurrence. Clin Exp Allergy. 2003;33(8):1033-1040. [Crossref]  [PubMed]
  31. Simons FE, Frew AJ, Ansotegui IJ, Bochner BS, Golden DB, Finkelman FD, et al. Risk assessment in anaphylaxis: current and future approaches. J Allergy Clin Immunol. 2007;120(1 Suppl):S2-S24. [Crossref]  [PubMed]
  32. Turner PJ, Baumert JL, Beyer K, Boyle RJ, Chan CH, Clark AT, et al. Can we identify patients at risk of life-threatening allergic reactions to food? Allergy. 2016;71(9):1241-1255. [Crossref]  [PubMed]
  33. Ponvert C, Perrin Y, Bados-Albiero A, Le Bourgeois M, Karila C, Delacourt C, et al. Allergy to beta-lactam antibiotics in children: results of a 20-year study based on clinical history, skin and challenge tests. Pediatr Allergy Immunol. 2011;22(4):411-418. [Crossref]  [PubMed]
  34. Quiralte J, Blanco C, Delgado J, Ortega N, Alcántara M, Castillo R, et al. Challenge-based clinical patterns of 223 Spanish patients with nonsteroidal anti-inflammatory drug-induced reactions. J Investig Allergol Clin Immunol. 2007;17(3):182188.
  35. Aalberse RC, Akkerdaas JH, Van Ree R. Cross-reactivity of IgE antibodies to allergens. Allergy. 2001;56(6):478-490. [Crossref]  [PubMed]
  36. Skypala IJ. Can patients with oral allergy syndrome be at risk of anaphylaxis? Curr Opin Allergy Clin Immunol. 2020;20(5):459-464. [Crossref]  [PubMed]
  37. Carlson G, Coop C. Pollen food allergy syndrome (PFAS): a review of current available literature. Ann Allergy Asthma Immunol. 2019;123(4):359-365. [Crossref]  [PubMed]
  38. Cho H, Kim D, Choo Y, Park J, Choi J, Jang D, et al. Common causes of emergency department visits for anaphylaxis in Korean community hospitals: A cross-sectional study. Medicine (Baltimore). 2019;98(4):e14114. [Crossref]  [PubMed]  [PMC]
  39. Kim MA, Kim DK, Yang HJ, Yoo Y, Ahn Y, Park HS, Alim Aydın Associated Cofactors and Comorbid Conditions et al. Pollen-food allergy syndrome in Korean pollinosis patients: a nationwide survey. Allergy Asthma Immunol Res. 2018;10(6):648-661. [Crossref]  [PubMed]  [PMC]
  40. Guvenir H, Dibek Misirlioglu E, Buyuktiryaki B, Zabun MM, Capanoglu M, Toyran M, et al. Frequency and clinical features of pollen-food syndrome in children. Allergol Immunopathol (Madr). 2020;48(1):78-83. [Crossref]  [PubMed]
  41. Chivato T, Juan F, Montoro A, Laguna R. Anaphylaxis induced by ingestion of a pollen compound. J Investig Allergol Clin Immunol. 1996;6(3):208-209. [PubMed]
  42. Mulla ZD, Simons FE. Concomitant chronic pulmonary diseases and their association with hospital outcomes in patients with anaphylaxis and other allergic conditions: a cohort study. BMJ Open. 2013;3(7):e003197. [Crossref]  [PubMed]  [PMC]
  43. Brown SG. Clinical features and severity grading of anaphylaxis. J Allergy Clin Immunol. 2004;114(2):371-376. [Crossref]  [PubMed]
  44. Greenberger PA, Rotskoff BD, Lifschultz B. Fatal anaphylaxis: postmortem findings and associated comorbid diseases. Ann Allergy Asthma Immunol. 2007;98(3):252-257. [Crossref]  [PubMed]
  45. Triggiani M, Patella V, Staiano RI, Granata F, Marone G. Allergy and the cardiovascular system. Clin Exp Immunol. 2008;153(Suppl 1):7-11. [Crossref]  [PubMed]  [PMC]
  46. Lee S, Hess EP, Nestler DM, Bellamkonda VR, Bellolio MF, Decker WW, et al. Antihypertensive medication use is associated with increased organ system involvement and hospitalization in emergency department patients with anaphylaxis. J Allergy Clin Immunol. 2013;131(4):1103-1108. [Crossref]  [PubMed]
  47. Yamashita Y, Charles N, Furumoto Y, Odom S, Yamashita T, Gilfillan AM, et al. Cutting edge: genetic variation influences Fc epsilonRI-induced mast cell activation and allergic responses. J Immunol. 2007;179(2):740-743. [Crossref]  [PubMed]
  48. Tiret L, Rigat B, Visvikis S, Breda C, Corvol P, Cambien F, et al. Evidence from combined segregation and linkage analysis that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51(1):197-205.
  49. Duan QL, Nikpoor B, Dube MP, Molinaro G, Meijer IA, Dion P, et al. A variant in XPNPEP2 is associated with angioedema induced by angiotensin I-converting enzyme inhibitors. Am J Hum Genet. 2005;77(4):617-626. [Crossref]  [PubMed]  [PMC]
  50. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28-35. [Crossref]  [PubMed]
  51. Upton JEM, Hoang JA, Leon-Ponte M, Finkelstein Y, Du YJ, Adeli K, et al. Platelet-activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children. Allergy. 2022;77(9):2665-2676. [Crossref]  [PubMed]
  52. Brockow K, Jofer C, Behrendt H, Ring J. Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy. 2008;63(2):226232. [Crossref]  [PubMed]
  53. Alvarez-Twose I, Vañó-Galván S, Sánchez-Muñoz L, Morgado JM, Matito A, Torrelo A, et al. Increased serum baseline tryptase levels and extensive skin involvement are predictors for the severity of mast cell activation episodes in children with mastocytosis. Allergy. 2012;67(6):813-821. [Crossref]  [PubMed]  [PMC]
  54. Kačar M, Rijavec M, Šelb J, Korošec P. Clonal mast cell disorders and hereditary -tryptasemia as risk factors for anaphylaxis. Clin Exp Allergy. 2023;53(4):392-404. [Crossref]  [PubMed]
  55. Oropeza AR, Bindslev-Jensen C, Broesby-Olsen S, Kristensen T, Møller MB, Vestergaard H, et al. Patterns of anaphylaxis after diagnostic workup: A follow-up study of 226 patients with suspected anaphylaxis. Allergy. 2017;72(12):1944-1952. [Crossref]  [PubMed]
  56. Matito A, Morgado JM, Sánchez-López P, Álvarez-Twose I, Sánchez-Muñoz L, Orfao A, et al. Management of anesthesia in adult and pediatric mastocytosis: A study of the Spanish Network on Mastocytosis (REMA) based on 726 anesthetic procedures. Int Arch Allergy Immunol. 2015;167(1):47-56. [Crossref]  [PubMed]
  57. Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A, Bai Y, et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet. 2016;48(12):1564-1569. [Crossref]  [PubMed]  [PMC]
  58. Zama D, Muratore E, Giannetti A, Neri I, Conti F, Magini P, et al. Case report: Hereditary alpha tryptasemia in children: A pediatric case series and a brief overview of literature. Front Pediatr. 2021;9:716786. [Crossref]  [PubMed]  [PMC]
  59. Madrange M, Rossignol J, Devin C, Bekel L, Bellon N, Welfringer-Morin C, et al. A high prevalence of hereditary alpha-tryptasemia in pediatric mastocytoma. Allergy. 2024;79(11):3129-3132. [Crossref]  [PubMed]
  60. Blais C Jr, Marceau F, Rouleau JL, Adam A. The kallikrein-kininogen-kinin system: Lessons from the quantification of endogenous kinins. Peptides. 2000;21(12):1903-1940. [Crossref]  [PubMed]
  61. Overlack A. ACE inhibitor-induced cough and bronchospasm: Incidence, mechanisms and management. Drug Saf. 1996;15(1):72-78. [Crossref]  [PubMed]
  62. Tejedor-Alonso MA, Farias-Aquino E, Pérez-Fernández E, Grifol-Clar E, Moro-Moro M, Rosado-Ingelmo A. Relationship between anaphylaxis and use of beta-blockers and angiotensin-converting enzyme inhibitors: A systematic review and meta-analysis of observational studies. J Allergy Clin Immunol Pract. 2019;7(3):879-885.e5. [Crossref]  [PubMed]
  63. Hepner MJ, Ownby DR, Anderson JA, Rowe MS, SearsEwald D, Brown EB. Risk of systemic reactions in patients taking beta-blocker drugs receiving allergen immunotherapy injections. J Allergy Clin Immunol. 1990;86(3 Pt 1):407-411. [Crossref]  [PubMed]
  64. Lang DM, Alpern MB, Visintainer PF, Smith ST. Increased risk for anaphylactoid reaction from contrast media in patients on beta-adrenergic blockers or with asthma. Ann Intern Med. 1991;115(4):270-276. [Crossref]  [PubMed]
  65. Nassiri M, Babina M, Dölle S, Edenharter G, Rueff F, Worm M. Ramipril and metoprolol intake aggravate human and murine anaphylaxis: Evidence for direct mast cell priming. J Allergy Clin Immunol. 2015;135(2):491-499. [Crossref]  [PubMed]
  66. Sheikh A, Ten Broek V, Brown SG, Simons FE. H1-antihistamines for the treatment of anaphylaxis: Cochrane systematic review. Allergy. 2007;62(8):830-837. [Crossref]  [PubMed]