AUTONOMOUS AND VISCERAL REFLEXES
Fahrettin Ege
Yüksek İhtisas University, Faculty of Medicine, Department of Neurology, Ankara, Türkiye
Ege F. Autonomous and visceral Reflexes. In: Duman T, editor. Reflexes The Codes of Neurology. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.159-169.
ABSTRACT
The autonomic nervous system is an important part of the peripheral and central nervous system that regulates the various responses given by humans to the physiological state that shows variations and to the constantly changing external world. The autonomic system is examined under two main categories: the sympathetic nervous system and the parasympathetic nervous system. Physiologically, the sympathetic nervous system regulates the fight and-flight response in the event of danger. In contrast, the parasympathetic nervous system governs the rest and digestion functions that occur during calm. These responses follow each other many times during the day or sometimes intertwine. When the efferent components are considered anatomically, the sympathetic nervous system is called the thoracolumbar system, and the parasympathetic nervous system is called the cranio-caudal system. however, in this section, the anatomy of the sympathetic and parasympathetic nervous systems will be explained not only by reducing it to efferent components but also by considering the afferent (general visceral afferents), the central nervous system (structures responsible for central autonomic control) and efferent parts together, i.e., in a holistic manner. The functioning and physiology of autonomic and visceral reflexes will also be discussed in accordance with these anatomical structures. unlike many other systems, the autonomic nervous system has no part that reaches the level of consciousness except for reflected visceral pain, and it is entirely concerned with reflexes and unconscious physiological mechanisms. These reflexes are examined under separate headings as arterial and venous vasomotor reflexes, arterial and cardiopulmonary baroreflexes, exercise pressor reflex, arterial chemoreflex, Bezold-Jarisch reflex regulating the syncope response, thermoregulatory responses concerning sweat glands, nociceptive responses, physiological response to hypoglycemia, and gustatory-salivary reflex. In addition, axon reflexes concerning only efferent components are also mentioned below. Cutaneous vasomotor axon reflex and various thermoregulatory axon responses are discussed in this context. The parasympathetic fibers carried by cranial nerves and their functions are not included in this section, as they will be addressed in a different section of this book. It should be noted that there is still insufficient anatomical and physiological knowledge about autonomic reflexes today. unlike other systems, testing them requires technological equipment, complex methodologies, academic discipline, and time. For this reason, many experimental physiology studies and clinical studies investigating autonomic responses are still being conducted today, and what is known will increase over time.
Keywords: Autonomic nervous system; Sympathetic nervous system; Parasympathetic nervous system; Axon reflex; vasomotor reflex; Arterial baroreflex; Thermoregulation
Kaynak Göster
Referanslar
- Jänig W. Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol. 1996;42(1-2):29-51. [Crossref] [PubMed]
- Sanvictores T, Tadi P. Neuroanatomy, autonomic nervous system visceral afferent fibers and pain. 2020. [Crossref] [PubMed]
- Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System. Cell. 2016;166(1):209-21. [Crossref] [PubMed]
- Thomas K, Minutello K. Neuroanatomy, cranial nerve 9 (glossopharyngeal). 2019.
- Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44. [Crossref] [PubMed]
- Benarroch, EE. The central autonomic network: functional organization, dysfunction, and perspective. In Mayo clinic proceedings 1993;68(10):988-1001. Elsevier. [Crossref] [PubMed]
- Pang CC. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol Ther. 2001;90(2-3):179-230. [Crossref] [PubMed]
- Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol. 2016;6(3):1239-1278. Published 2016 Jun 13. [Crossref] [PubMed]
- Waxenbaum JA, Reddy V, Varacallo M. Anatomy, autonomic nervous system. Google Scholar. 2019. [Crossref]
- LeBouef T, Yaker Z, Whited L. Autonomic nervous system. 2021. [Crossref] [PubMed]
- Biaggioni I. The Pharmacology of Autonomic Failure: From Hypotension to Hypertension. Pharmacol Rev. 2017;69(1):53-62. [Crossref] [PubMed]
- Gibbins I. Functional organization of autonomic neural pathways. Organogenesis. 2013;9(3):169-175.
- Toda N, Okamura T. Recent advances in research on nitrergic nerve-mediated vasodilatation. Pflugers Arch. 2015;467(6):1165-1178. [Crossref] [PubMed]
- Kubasch ML, Kubasch AS, Torres Pacheco J, Buchmann SJ, Illigens BM, Barlinn K, et al. Laser Doppler Assessment of Vasomotor Axon Reflex Responsiveness to Evaluate Neurovascular Function. Front Neurol. 2017;8:370. [Crossref] [PubMed]
- Hijazi MM, Buchmann SJ, Sedghi A, Illigens BM, Reichmann H, Schackert G, et al. Assessment of cutaneous axon-reflex responses to evaluate functional integrity of autonomic small nerve fibers. Neurol Sci. 2020;41(7):1685-1696. [Crossref] [PubMed]
- Brinton M, Mandel Y, Schachar I, Palanker D. Mechanisms of electrical vasoconstriction. J Neuroeng Rehabil. 2018;15(1):43. Published 2018. [Crossref] [PubMed]
- Mandel Y, Manivanh R, Dalal R, Huie P, Wang J, Brinton M, Palanker D. Vasoconstriction by electrical stimulation: new approach to control of non-compressible hemorrhage. Sci Rep. 2013;3:2111. [Crossref] [PubMed]
- Ege F, Kazci Ö. Median Nerves’ Electrical Activation Reduces Ipsilateral Brachial Arteries’ Blood Flow and Diameter. Ann Indian Acad Neurol. 2023;26(6):883-888. [Crossref] [PubMed]
- Ikuta Y, Shimoda O, Ushijima K, Terasaki H. Skin vasomotor reflex as an objective indicator to assess the level of regional anesthesia. Anesth Analg. 1998;86(2):336-340. [Crossref] [PubMed]
- Netten PM, Wollersheim H, van den Broek P, van der Heijden HF, Thien T. Evaluation of two sympathetic cutaneous vasomotor reflexes using laser Doppler fluxmetry. Int J Microcirc Clin Exp. 1996;16(3):124-128. [Crossref] [PubMed]
- Herbaut AG, Cole JD, Sedgwick EM. A cerebral hemisphere influence on cutaneous vasomotor reflexes in humans. J Neurol Neurosurg Psychiatry. 1990;53(2):118-120. [Crossref] [PubMed]
- Dyson KS, Shoemaker JK, Hughson RL. Effect of acute sympathetic nervous system activation on flow-mediated dilation of brachial artery. Am J Physiol Heart Circ Physiol. 2006;290(4):H1446-H1453. [Crossref] [PubMed]
- Harris CW, Edwards JL, Baruch A, Riley WA, Pusser BE, Rejeski WJ, et al. Effects of mental stress on brachial artery flow-mediated vasodilation in healthy normal individuals. Am Heart J. 2000;139(3):405-11. [Crossref] [PubMed]
- Sinoway LI, Wilson JS, Zelis R, et al. Sympathetic tone affects human limb vascular resistance during a maximal metabolic stimulus. Am J Physiol. 1988;255(4 Pt 2):H937-H946. [Crossref] [PubMed]
- Badal JJ, Kiesau A, Boyle P. Effects of median nerve block on radial artery diameter and peak velocity. Local Reg Anesth. 2010;3:5-10. [Crossref] [PubMed]
- Li T, Ye XH, Nan Y, Shi T, Ye QG, Ma JF et al. [Comparison of ultrasound and nerve stimulation techniques for brachial plexus block for regional hemodynamic changes of upper extremity]. Zhonghua Yi Xue Za Zhi. 2013;93(3):187-90. Chinese. [PubMed]
- Ghasemi-Esfe AR, Morteza A, Khalilzadeh O, Mazloumi M, Ghasemi-Esfe M, Rahmani M. Color Doppler ultrasound for evaluation of vasomotor activity in patients with carpal tunnel syndrome. Skeletal Radiol. 2012;41(3):281-6.
- Hendriks-Balk MC, Damianaki A, Polychronopoulou E, Brito W, Pruijm M, Wuerzner G. Contrast-Enhanced Ultrasonography Enables the Detection of a Cold Pressor Test-Induced Increase in Renal Microcirculation in Healthy Participants. Front Cardiovasc Med. 2022;9:899327. [Crossref]
- Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988;77(1):43-52.
- Grewal S, Sekhon TS, Walia L, Gambhir RS. Cardiovascular response to acute cold stress in non-obese and obese healthy adults. Ethiop J Health Sci. 2015;25(1):47-52. [Crossref] [PubMed]
- Tymko MM, Kerstens TP, Wildfong KW, Ainslie PN. Cerebrovascular response to the cold pressor test the critical role of carbon dioxide. Exp Physiol. 2017;102(12):1647-1660. [Crossref] [PubMed]
- ter Laan M, van Dijk JM, Elting JW, Staal MJ, Absalom AR. Sympathetic regulation of cerebral blood flow in humans: a review. Br J Anaesth. 2013;111(3):361-7. [Crossref] [PubMed]
- Oue A, Sato K, Yoneya M, Sadamoto T. Decreased compliance in the deep and superficial conduit veins of the upper arm during prolonged cycling exercise. Physiol Rep. 2017;5(8):e13253. [Crossref] [PubMed]
- Ege F, Aslanyavrusu M, Uzunok B, Özdemir O. Effects of the Cold Pressor Test on Popliteal Vein Diameter, Flow Velocity, and Blood Flow in the Lower Limb in 60 Healthy Individuals. Med Sci Monit. 2024 Jun 17;30:e944560. [Crossref] [PubMed]
- Martin EA, Charkoudian N. Changes in central venous pressure with vasoactive drug injections in humans. Clin Auton Res. 2005;15(2):121-5. [Crossref] [PubMed]
- Frithiof R, Ramchandra R, Hood S, May C, Rundgren M. Hypothalamic paraventricular nucleus mediates sodium-induced changes in cardiovascular and renal function in conscious sheep. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R185-93. [Crossref] [PubMed]
- Ege F, Özdemir O, Aslanyavrusu M, Uzunok B, Sarıçam G. Cold Pressor Test Induces Significant Changes in Internal Jugular Vein Flow Dynamics in Healthy Young Adults. Med Sci Monit. 2024;30:e946055. [Crossref] [PubMed]
- Joyner MJ, Charkoudian N, Wallin BG. A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Exp Physiol. 2008;93(6):715-24. [Crossref] [PubMed]
- Briant LJ, Charkoudian N, Hart EC. Sympathetic regulation of blood pressure in normotension and hypertension: when sex matters. Exp Physiol. 2016;101(2):219-29. [Crossref] [PubMed]
- Wan HY, Bunsawat K, Amann M. Autonomic cardiovascular control during exercise. Am J Physiol Heart Circ Physiol. 2023;325(4):H675-H686. [Crossref] [PubMed]
- Ogoh S, Fisher JP, Young CN, Raven PB, Fadel PJ. Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans. Am J Physiol Heart Circ Physiol. 2009;296(5):H1416-24. [Crossref] [PubMed]
- Walker JL, Abboud FM, Mark AL, Thames MD. Interaction of cardiopulmonary and somatic reflexes in humans. J Clin Invest. 1980;65(6):1491-97. [Crossref] [PubMed]
- Kaufman MP, Waldrop TG, Rybicki KJ, Ordway GA, Mitchell JH. Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovasc Res. 1984;18(11):663-8. [Crossref] [PubMed]
- Morrison SF. Differential control of sympathetic outflow. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R683-98. [Crossref] [PubMed]
- Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med. 2020;10(2):a034173. [Crossref] [PubMed]
- D’Alessio JG, Weller RS, Rosenblum M. Activation of the Bezold-Jarisch reflex in the sitting position for shoulder arthroscopy using interscalene block. Anesth Analg. 1995;80(6):1158-62.00016. [Crossref] [PubMed]
- Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1983;1(1):90-102. [Crossref] [PubMed]
- Lovelace JW, Ma J, Yadav S, Chhabria K, Shen H, Pang Z, et al. Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope. Nature. 2023;623(7986):387-396. [Crossref] [PubMed]
- Schlader ZJ, Vargas NT. Regulation of Body Temperature by Autonomic and Behavioral Thermoeffectors. Exerc Sport Sci Rev. 2019;47(2):116-126. [Crossref] [PubMed]
- Johnson JM, Minson CT, Kellogg DL Jr. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol. 2014;4(1):33-89. [Crossref] [PubMed]
- Shibasaki M, Wilson TE, Crandall CG. Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol (1985). 2006;100(5):1692-701. [Crossref] [PubMed]
- Schlader ZJ, Perry BG, Jusoh MRC, Hodges LD, Stannard SR, Mündel T. Human temperature regulation when given the opportunity to behave. European journal of applied physiology, 2013;113:1291-1301. [Crossref] [PubMed]
- Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011 Jan 15;214(Pt 2):242-53. [Crossref] [PubMed]
- Low PA, Fealey RD, Sheps SG, Su WP, Trautmann JC, Kuntz NL. Chronic idiopathic anhidrosis. Ann Neurol. 1985 Sep;18(3):344-8. [Crossref] [PubMed]
- Illigens BM, Gibbons CH. Sweat testing to evaluate autonomic function. Clin Auton Res. 2009;19(2):79-87. [Crossref] [PubMed]
- Ziemssen T, Siepmann T. The Investigation of the Cardiovascular and Sudomotor Autonomic Nervous System-A Review. Front Neurol. 2019;10:53. [Crossref] [PubMed]
- Vetrugno R, Liguori R, Cortelli P, Montagna P. Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res. 2003;13(4):256-70. [Crossref] [PubMed]
- Cortelli P, Giannini G, Favoni V, Cevoli S, Pierangeli G. Nociception and autonomic nervous system. Neurol Sci. 2013;34 Suppl 1:S41-6. [Crossref] [PubMed]
- Kumada M, Dampney RA, Whitnall MH, Reis DJ. Hemodynamic similarities between the trigeminal and aortic vasodepressor responses. Am J Physiol. 1978;234(1):H67-73. [Crossref] [PubMed]
- Yu YH, Blessing WW. Constriction of the ear pinna vascular bed accompanies the trigeminal depressor response in rabbits. Neurosci Lett. 1998;255(3):172-4. [Crossref] [PubMed]
- Forte G, Troisi G, Pazzaglia M, Pascalis V, Casagrande M. Heart Rate Variability and Pain: A Systematic Review. Brain Sci. 2022;12(2):153. [Crossref] [PubMed]
- Koenig J, Jarczok MN, Ellis RJ, Hillecke TK, Thayer JF. Heart rate variability and experimentally induced pain in healthy adults: a systematic review. Eur J Pain. 2014;18(3):301-14. [Crossref] [PubMed]
- Berne C, Fagius J. Skin nerve sympathetic activity during insulin-induced hypoglycaemia. Diabetologia. 1986;29(12):855-60. [Crossref] [PubMed]
- Hoffman RP, Sinkey CA, Anderson EA. Hypoglycemia increases muscle sympathetic nerve activity in IDDM and control subjects. Diabetes Care. 1994;17(7):673-80. [Crossref] [PubMed]
- Proctor GB, Carpenter GH. Salivary secretion: mechanism and neural regulation. Monogr Oral Sci. 2014;24:14-29. [Crossref] [PubMed]
- Satoh-Kuriwada S, Shoji N, Miyake H, Watanabe C, Sasano T. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands. Biomed Res Int. 2018;2018:3847075. [Crossref] [PubMed]
- Lee VM, Linden RW. An olfactory-submandibular salivary reflex in humans. Exp Physiol. 1992;77(1):221-4. [Crossref] [PubMed]