Biochemistry of Inflammation: Its Mediators and Activities

Alper Baran SÖZMENa , Eser YILDIRIM SÖZMENb
aİzmir Institute of Technology, Department of Bioengineering, İzmir, Türkiye
bİzmir Tınaztepe University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Türkiye

Sözmen AB, Yıldırım Sözmen E. Biochemistry of inflammation: Its mediators and activities. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.6-12.

Article Language: EN

ABSTRACT
Inflammation is a process which aims to protect the host against bacteria, viruses, and infections; it is executed by both immune and non-immune cells. Acute inflammatory response is mainly driven by mast cells which release histamine, bradykinin, Tumor necrosis factor (TNF) and Interleukin1 (IL-1) subsequently resulting in vasodilation by nitric oxide and vascular leakage of leucocytes and activation of complement and clotting system. The foreign agent undergoes phagocytosis and is rendered harmless by increased concentration oxygen radical and nitric oxide. However, various factors such as aging, obesity, stress, environmental factors lead to low-grade ”sterile” induction of inflammation and it’s defined as chronic systemic inflammation (CSI). Pathogen-associated molecular patterns (PAMPs) and/or Damage-associated molecular patterns (DAMPs) activate inflammatory response by binding to Pattern Recognition Receptors (mannose binding receptor, scavenger receptor, Toll-like receptor, Gprotein receptor etc). The main distinction of CSI from acute inflammatory response is that CSI involve the immune attack and activated macrophages. Classically activated macrophages release many cytokines, adhesion molecules, growth factors, and matrix metalloproteinases. Altogether these effects might lead to tissue damage and result in chronic inflammatory diseases.

Keywords: Inflammation; pathogen-associated molecular patterns (PAMPs); damage-associated molecular patterns (DAMPs); nuclear factor kappa B

Referanslar

  1. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 6th ed. Saunders Elsevier; 2010. p.19-47. [Crossref]
  2. Germolec DR, Shipkowski KA, Frawley RP, Evans E. Chapter-5: Markers of Inflammation. In: DeWitt JC, Rockwell CE, Bowman CC, eds. Immunotoxicity Testing: Methods and Protocols, Methods in Molecular Biology. Springer NY; 2018. p.1803:57-79. [Crossref]  [PubMed]
  3. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al A guiding map for inflammation. Nat Immunol. 2017;18(8): 826-31. [Crossref]  [PubMed]  [PMC]
  4. Ayman MM, Wilkinson FL, Sandhu MA, Lightfoot AP. The Interplay of Oxidative Stress and Inflammation: Mechanistic Insights and Therapeutic Potential of Antioxidants. Oxidative Medicine and Cellular Longevity. 2021;4. [Crossref]
  5. Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, et al. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res. 2022;17(8):1711-6. [Crossref]  [PubMed]  [PMC]
  6. Chávez-Galán L, Olleros ML, Vesin D and Garcia I. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages. Front. Immunol. 2015;6:263. [Crossref]  [PubMed]  [PMC]
  7. Li M, Hou Q, Zhong L, Zhao Y and Fu X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front. Immunol. 2021;12:681-710. [Crossref]  [PubMed]  [PMC]
  8. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nature Medicine. 2019;25:1822-32. [Crossref]  [PubMed]  [PMC]
  9. Liaqat A, Asad M, Shoukat F, Khan AU. A Spotlight on the Underlying Activation Mechanisms of the NLRP3 Inflammasome and its Role in Atherosclerosis: A Review. Inflammation. 2020;43(6):2011-20. [Crossref]  [PubMed]
  10. Turan E, Sozmen B, Eltutan M, Sozmen EY. Serum chitotriosidase enzyme activity is closely related to HbA1c levels and the complications in patients with diabetes mellitus type 2 Diabetes Metab Syndr. 2017;11 Suppl 1:S503-S506. [Crossref]  [PubMed]
  11. Sagris M, Theofilis P, Antonopoulos AS, Oikonomou E, Paschaliori C, Galiatsatos N et al. Inflammation in Coronary Microvascular Dysfunction. Int J Mol. Sci. 2021;22:13471. [Crossref]  [PubMed]  [PMC]
  12. Piccoli de Meloa LG, Nunesa SOV, Andersond G, Vargasa HO, Barbosac DS, Galeckif P, et al. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Progress in Neuropsychopharmacology & Biological Psychiatry. 2017; 78:34-50. [Crossref]  [PubMed]
  13. Olvera Alvarez HA, Kubzansky LD, Campen MJ, Slavich GM. Early life stress, air pollution, inflammation, and disease: an integrative review and immunologic model of social-environmental adversity and lifespan health. Neurosci Biobehav Rev. 2018;92:226-42. [Crossref]  [PubMed]  [PMC]
  14. Mohammad S, Thiemermann C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Front. Immunol. 2021;11:594150. [Crossref]  [PubMed]  [PMC]
  15. Li D, Wu M. Patern recognition receptors in health and disease. Signal Trnasduct Target Ther. 2021;6 (1):291. [Crossref]  [PubMed]  [PMC]
  16. Cunha LL, Valsecchi VADS, Ward LS. Investigating population-level immunosenescence: From bench to bedside Front Immunol. 2022;13:949928. [Crossref]  [PubMed]  [PMC]
  17. Qu L, Matz AJ, Karlinsey K, Cao Z, Vella AT, Zhou B. Macrophages at the Crossroad of Meta-Inflammation and Inflammaging. Genes. 2022; 13(11):2074. [Crossref]  [PubMed]  [PMC]
  18. Kaltenegger HC, Becker L, Rohleder N, Nowak D, Weigl M. Associations of working conditions and chronic low-grade inflammation among employees: a systematic review and meta-analysis. Scand J Work Environ Health. 2021; 47(8):565-81. [Crossref]  [PubMed]  [PMC]
  19. Madore C, Yin Z, Leibowitz J, Butovsky O. Microglia, Lifestyle Stress, and Neurodegeneration. Immunity. 2020;52:222-40. [Crossref]  [PubMed]  [PMC]
  20. El-Zayat SR, Sibaii H, Mannaa AF. Toll-like receptors activation, signalling and targeting: an overview. Bulletin of National Research Centre. 2019; 43:187. [Crossref]
  21. Mitchell JP, Carmody RJ. Chapter 2: NF-κB and the Transcriptional Control of Inflammation. International Review of Cell and Molecular Biology. 2018; 335:41-84. [Crossref]  [PubMed]
  22. Bhosale PB, Kim HH, Abusaliya A, Vetrivel P, Ha SE, Park MY, et al. Structural and Functional Properties of Activator Protein-1 in Cancer and Inflammation. Evidence-Based Complementary and Alternative Medicine. 2022. p.8 [Crossref]  [PubMed]  [PMC]
  23. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation Int J Mol Sci. 2019; 20(13): 3328. [Crossref]  [PubMed]  [PMC]
  24. Kigka VI, Potsika V, Mantzaris M, Tsakanikas V, Koncar I, Fotiadis DI. Serum Biomarkers in Carotid Artery Disease. Diagnostics. 2021;11:2143. [Crossref]  [PubMed]  [PMC]
  25. Kolodziej AR, Abo-Aly M, Elsawalhy E, Campbell C, Ziada KM, Abdel-Latif A. Prognostic Role of Elevated Myeloperoxidase in Patients with Acute Coronary Syndrome: A Systemic Review and Meta-Analysis. Mediators of Inflammation. 2019. p.9. [Crossref]  [PubMed]  [PMC]
  26. Kologlu T, Ucar SK, Levent E, Akcay YD, Coker M, Sozmen EY. Chitotriosidase as a possible marker of clinically evidenced atherosclerosis in dyslipidemic children. J Pediatr Endocrinol Metab. 2014;27(7-8):701-8. [Crossref]  [PubMed]
  27. Rocha ARF, Morais NS, Priore SE, Franceschini SCC. Inflammatory Biomarkers and Components of Metabolic Syndrome in Adolescents: a Systematic Review. Inflammation. 2022;45 (1):14-30. [Crossref]  [PubMed]
  28. Alfadul H, Sabico S, Al-Daghri NM. The role of interleukin-1b in type 2 diabetes mellitus: A systematic review and meta-analysis. Front. Endocrinol. 2022; 13:901616. [Crossref]  [PubMed]  [PMC]
  29. Kwon EH. Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF biomarkers in Parkinson's Disease. Biomolecules. 2022;12:329. [Crossref]  [PubMed]  [PMC]