Biomarkers for Predicting Immunotherapy Efficacy

Fahrettin DUYMUŞa , Taha BAHSİb
aKonya City Hospital, Clinic of Medical Genetics, Konya, Türkiye
bAnkara Etlik City Hospital, Clinic of Medical Genetics, Ankara, Türkiye

Duymuş F, Bahsi T. Biomarkers for predicting immunotherapy efficacy. In: Şendur MAN, ed. Current Immunotherapy Landscape for Solid Tumors. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.5-11.

ABSTRACT
In recent years, immunotherapy has become a significant and appealing approach in cancer treatment, representing an innovative therapeutic regimen. While immune response is a focal point of cancer treatment, achieving durable responses in all cancer patients during therapy is challenging due to the diversity and dynamic nature of the immune system, as well as tumor heterogeneity. Biomarkers are biological indicators that can be used to select patients for systemic anticancer treatments like immunotherapy. Immune checkpoint inhibitor-based immunotherapy, which is one of the strategies applied in cancer immunotherapy, has opened new horizons in cancer treatment, offering a potent and evolving approach against cancer that can be combined with chemotherapy, radiotherapy, and surgery. Nevertheless, this therapeutic revolution has also increased the need for biomarkers that can better identify patients with the highest likelihood of benefiting from immune checkpoint inhibitors. Here, we aim to provide a general overview of clinically predictive biomarkers for determining the effectiveness of immune checkpoint-based immunotherapy.

Keywords: Immunotherapy; genetics, medical; human genetics

Referanslar

  1. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335-7. [Crossref]  [PubMed]  [PMC]
  2. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73. [Crossref]  [PubMed]  [PMC]
  3. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517-26. [Crossref]  [PubMed]
  4. Paz-Ares LG, Ramalingam SS, Ciuleanu TE, Lee JS, Urban L, Caro RB, et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial. J Thorac Oncol. 2022;17(2):289-308. [Crossref]  [PubMed]
  5. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, eta al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018;36(8):773-9. [Crossref]  [PubMed]
  6. Tsang J, Wong JSL, Kwok GGW, Li BCW, Leung R, Chiu J, et al. Nivolumab + Ipilimumab for patients with hepatocellular carcinoma previously treated with Sorafenib. Expert Rev Gastroenterol Hepatol. 2021;15(6):589-98. [Crossref]  [PubMed]
  7. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109-17. [Crossref]  [PubMed]
  8. Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375-84. [Crossref]  [PubMed]
  9. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al.; POPLAR Study Group. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837-46. [Crossref]  [PubMed]
  10. Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, et al. Safety and Efficacy of Durvalumab (MEDI4736), an Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Inhibitor, in Patients With Advanced Urothelial Bladder Cancer. J Clin Oncol. 2016;34(26):3119-25. [Crossref]  [PubMed]  [PMC]
  11. Zynyz (retifanlimab-dlwr) injection, for intravenous use. US FDA approved production information; Wilmington DE: Incyte Corporation. 2023; Available from: [Link]
  12. Jemperli (dostarlimab-gxly) injection, for intravenous use. US FDA approved product information; Philadelphia, PA: GlaxoSmithKline LLC. 2021; Available from: [Link]
  13. Bavencio (avelumab) injection, for intravenous use. US FDA approved product information; Rockland, MD: EMD Serono, Inc; May 2019. 2019; Available from: [Link]
  14. Libtayo (cemiplimab-rwlc) injection, for intravenous use. US FDA approved product information; Tarrytown, NY: Regeneron Pharmaceuticals, Inc;. 2020.
  15. Tremelimumab (imjudo) injection, for intravenous use. US FDA approved product information; Wilmington DE: AstraZeneca Pharmaceuticals. 2022; Available from: [Link]
  16. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020;12(3):738. [Crossref]  [PubMed]  [PMC]
  17. Goldman JW, Dvorkin M, Chen Y, Reinmuth N, Hotta K, et al; CASPIAN investigators. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2021;22(1):51-65. [Crossref]  [PubMed]
  18. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-30. [Crossref]  [PubMed]
  19. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al.; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018-28. [Crossref]  [PubMed]
  20. Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(2):123-35. [Crossref]  [PubMed]  [PMC]
  21. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731-e41. [Crossref]  [PubMed]
  22. Nakamura Y. Biomarkers for Immune Checkpoint Inhibitor-Mediated Tumor Response and Adverse Events. Front Med (Lausanne). 2019;6:119. [Crossref]  [PubMed]  [PMC]
  23. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018;4(12):1721-8. Erratum in: JAMA Oncol. 2018;4(12):1792. [Crossref]  [PubMed]  [PMC]
  24. Carrera PM, Kantarjian HM, Blinder VS. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J Clin. 2018;68(2):153-65. [Crossref]  [PubMed]  [PMC]
  25. Buder-Bakhaya K, Hassel JC. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment-A Review From the Melanoma Perspective and Beyond. Front Immunol. 2018;9:1474. [Crossref]  [PubMed]  [PMC]
  26. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. [Crossref]
  27. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293-7. [Crossref]  [PubMed]  [PMC]
  28. Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 2016;38(1):3-15. [Crossref]  [PubMed]  [PMC]
  29. Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. [Crossref]  [PubMed]  [PMC]
  30. Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909-20. [Crossref]  [PubMed]
  31. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al.; KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823-33. [Crossref]  [PubMed]
  32. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064-74. [Crossref]  [PubMed]  [PMC]
  33. Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, et al. Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. J Clin Oncol. 2016;34(34):4102-9. [Crossref]  [PubMed]  [PMC]
  34. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868-76. [Crossref]  [PubMed]
  35. Guo L, Song P, Xue X, Guo C, Han L, Fang Q, et al. Variation of Programmed Death Ligand 1 Expression After Platinum-based Neoadjuvant Chemotherapy in Lung Cancer. J Immunother. 201942(6):215-20. [Crossref]  [PubMed]  [PMC]
  36. Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 Testing in Guiding Patient Selection for PD-1/PD-L1 Inhibitor Therapy in Lung Cancer. Mol Diagn Ther. 2018;22(1):1-10. [Crossref]  [PubMed]  [PMC]
  37. Hutarew G. PD-L1 testing, fit for routine evaluation? From a pathologist's point of view. Memo. 2016;9(4):201-6. [Crossref]  [PubMed]  [PMC]
  38. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44-56. [Crossref]  [PubMed]  [PMC]
  39. Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med. 2017;377(25):2500-1. [Crossref]  [PubMed]  [PMC]
  40. Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens. Annu Rev Immunol. 2019;37:173-200. [Crossref]  [PubMed]
  41. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509-20. [Crossref]  [PubMed]  [PMC]
  42. Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093-104. [Crossref]  [PubMed]  [PMC]
  43. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353-65. [Crossref]  [PubMed]
  44. Maleki Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):157. [Crossref]  [PubMed]  [PMC]
  45. Galanina N, Goodman AM, Cohen PR, Frampton GM, Kurzrock R. Successful Treatment of HIV-Associated Kaposi Sarcoma with Immune Checkpoint Blockade. Cancer Immunol Res. 2018;6(10):1129-35. [Crossref]  [PubMed]  [PMC]
  46. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463-9. [Crossref]  [PubMed]  [PMC]
  47. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor Mutational Burden as a Predictive Biomarker in Solid Tumors. Cancer Discov. 2020;10(12):1808-25. [Crossref]  [PubMed]  [PMC]
  48. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. [Crossref]  [PubMed]  [PMC]
  49. Merino DM, McShane LM, Fabrizio D, Funari V, Chen SJ, White JR, et al.; TMB Harmonization Consortium. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer. 2020;8(1):e000147. [Crossref]  [PubMed]  [PMC]
  50. Dathathri E, Isebia KT, Abali F, Lolkema MP, Martens JWM, Terstappen LWMM, et al. Liquid Biopsy Based Circulating Biomarkers in Metastatic Prostate Cancer. Front Oncol. 2022;12:863472. [Crossref]  [PubMed]  [PMC]
  51. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7(3):153-62. [Crossref]  [PubMed]  [PMC]
  52. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):1232-43. [Crossref]  [PubMed]
  53. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Rüschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261-8. [Crossref]  [PubMed]  [PMC]
  54. Salipante SJ, Scroggins SM, Hampel HL, Turner EH, Pritchard CC. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):1192-9. [Crossref]  [PubMed]
  55. Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):54. [Crossref]  [PubMed]  [PMC]
  56. Lee V, Murphy A, Le DT, Diaz LA Jr. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade. Oncologist. 2016;21(10):1200-11. [Crossref]  [PubMed]  [PMC]
  57. Lemery S, Keegan P, Pazdur R. First FDA Approval Agnostic of Cancer Site - When a Biomarker Defines the Indication. N Engl J Med. 2017;377(15):1409-12. [Crossref]  [PubMed]
  58. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182-91. Erratum in: Lancet Oncol. 2017;18(9):e510. [Crossref]  [PubMed]
  59. Mirza MR, Chase DM, Slomovitz BM, dePont Christensen R, Novák Z, Black D, et al.; RUBY Investigators. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N Engl J Med. 2023;388(23):2145-2158. [Crossref]  [PubMed]
  60. O'Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71-81. [Crossref]  [PubMed]