BIOMARKERS IN ANAPHYLAXIS

Kazım Okan Dolu

Kanuni Sultan Süleyman Training and Research Hospital, Department of Pediatric Immunology and Allergic Diseases, İstanbul, Türkiye

Dolu KO. Biomarkers in Anaphylaxis. In: Harmancı K, editor. Childhood Anaphylaxis: New Developments in Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.223-238.

ABSTRACT

Anaphylaxis is a rapidly developing, potentially life-threatening systemic hypersensitivity reaction, with diagnosis primarily based on clinical findings. Therefore, acute treatment should not be delayed for laboratory tests. Laboratory tests are often needed in cases where anaphylaxis diagnosis is suspected. Serum total mast cell tryptase is the most frequently used laboratory test in anaphylaxis diagnosis. Tryptase, a neutral serine protease released from mast cells, has significant diagnostic value due to its peak levels occurring 30-120 minutes after reaction onset and its longer half-life (approximately 2 hours) compared to other mediators. However, tryptase levels may vary according to the etiology of anaphylaxis. In food-induced anaphylaxis, tryptase elevation is less pronounced compared to drug and venom-induced cases, and may not increase at all in some patients. Serial measurements and comparison with baseline values are recommended for optimal diagnostic value; specifically, using the formula “peak mast cell tryptase ≥ [1.2 × baseline tryptase + 2 ng/mL]” increases diagnostic accuracy. Histamine and its metabolites (N-methylhistamine, imidazole acetic acid) may be valuable in food-induced anaphylaxis cases where tryptase does not elevate, but histamine’s short half-life (1-2 minutes) and special sample processing requirements limit its clinical use. Platelet activating factor (PAF) shows strong correlation with anaphylaxis severity and is found to be superior to tryptase and histamine in predicting reaction severity. Other biomarkers such as chymase, carboxypeptidase A3, CCL-2, dipeptidyl peptidase I, and basogranulin may offer complementary diagnostic value, especially in situations where tryptase measurement remains negative. MicroRNAs, particularly hsa-miR-451a, miR-21-3p, and miR-487b-3p, emerge as promising new biomarkers in anaphylaxis diagnosis, showing sensitive diagnostic value in both adult and pediatric anaphylaxis cases. Using combinations of multiple biomarkers rather than a single marker can increase sensitivity and specificity, especially when tryptase levels do not elevate. Current clinical guidelines consider measuring and comparing acute and baseline serum tryptase levels more valuable for anaphylaxis diagnosis. The routine clinical use of other biomarkers is limited due to their short half-lives, special sampling requirements, non-standardized analysis platforms, absence of commercialized kits, and lack of sufficiently large prospective validation studies.

Keywords: Anaphylaxis; Biomarkers; Tryptase; Histamine; Platelet-activating factor

Referanslar

  1. Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World allergy organization anaphylaxis guidance 2020. World Allergy Organ J. 2020;13(10):100472. [Crossref]  [PubMed]  [PMC]
  2. Muraro A, Worm M, Alviani C, Cardona V, DunnGalvin A, Garvey LH, et al. EAACI guidelines: Anaphylaxis (2021 update). Allergy. 2022;77(2):357-77. [Crossref]  [PubMed]
  3. Orhan F, Civelek E, Şahiner Üm, Arga M, Can D, Çalikaner AZ, et al. Anafilaksi: Türk Ulusal Rehberi 2018. Asthma Allergy Immunology/Astim Allerji Immunoloji. 2018;16.
  4. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017;140(2):335-48. [Crossref]  [PubMed]  [PMC]
  5. Beck SC, Wilding T, Buka RJ, Baretto RL, Huissoon AP, Krishna MT. Biomarkers in Human Anaphylaxis: A Critical Appraisal of Current Evidence and Perspectives. Front Immunol. 2019;10:494. [Crossref]  [PubMed]  [PMC]
  6. Galvan-Blasco P, Gil-Serrano J, Sala-Cunill A. New Biomarkers in Anaphylaxis (Beyond Tryptase). Curr Treat Options Allergy. 2022;9(4):303-22. [Crossref]  [PubMed]  [PMC]
  7. Shaker MS, Wallace DV, Golden DBK, Oppenheimer J, Bernstein JA, Campbell RL, et al. Anaphylaxis-a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis. J Allergy Clin Immunol. 2020;145(4):1082-123. [Crossref]  [PubMed]
  8. Butterfield JH, Ravi A, Pongdee T. Mast Cell Mediators of Significance in Clinical Practice in Mastocytosis. Immunol Allergy Clin North Am. 2018;38(3):397-410. [Crossref]  [PubMed]
  9. Lyons JJ, Yu X, Hughes JD, Le QT, Jamil A, Bai Y, et al. Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number. Nat Genet. 2016;48(12):1564-9. [Crossref]  [PubMed]  [PMC]
  10. Payne V, Kam PC. Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia. 2004;59(7):695-703. [Crossref]  [PubMed]
  11. Vitte J. Human mast cell tryptase in biology and medicine. Mol Immunol. 2015;63(1):18-24. [Crossref]  [PubMed]
  12. Lyons JJ, Chovanec J, O'Connell MP, Liu Y, Šelb J, Zanotti R, et al. Heritable risk for severe anaphylaxis associated with increased -tryptase-encoding germline copy number at TPSAB1. J Allergy Clin Immunol. 2021;147(2):622-32. [Crossref]  [PubMed]
  13. Passia E, Jandus P. Using Baseline and Peak Serum Tryptase Levels to Diagnose Anaphylaxis: a Review. Clin Rev Allergy Immunol. 2020;58(3):366-76. [Crossref]  [PubMed]
  14. Sala-Cunill A, Cardona V, Labrador-Horrillo M, Luengo O, Esteso O, Garriga T, et al. Usefulness and limitations of sequential serum tryptase for the diagnosis of anaphylaxis in 102 patients. Int Arch Allergy Immunol. 2013;160(2):192-9. [Crossref]  [PubMed]
  15. Nguyen SMT, Rupprecht CP, Haque A, Pattanaik D, Yusin J, Krishnaswamy G. Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond. Int J Mol Sci. 2021;22(15). [Crossref]  [PubMed]  [PMC]
  16. Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest. 1989;83(5):1551-5. [Crossref]  [PubMed]  [PMC]
  17. Golden DBK, Wang J, Waserman S, Akin C, Campbell RL, Ellis AK, et al. Anaphylaxis: A 2023 practice parameter update. Ann Allergy Asthma Immunol. 2024;132(2):124-76. [Crossref]  [PubMed]
  18. Mateja A, Wang Q, Chovanec J, Kim J, Wilson KJ, Schwartz LB, et al. Defining baseline variability of serum tryptase levels improves accuracy in identifying anaphylaxis. J Allergy Clin Immunol. 2022;149(3):1010-7.e10. [Crossref]  [PubMed]  [PMC]
  19. Valent P, Akin C, Arock M, Brockow K, Butterfield JH, Carter MC, et al. Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol. 2012;157(3):215-25. [Crossref]  [PubMed]  [PMC]
  20. Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am. 2006;26(3):451-63. [Crossref]  [PubMed]
  21. Borer-Reinhold M, Haeberli G, Bitzenhofer M, Jandus P, Hausmann O, Fricker M, et al. An increase in serum tryptase even below 11.4 ng/mL may indicate a mast cell-mediated hypersensitivity reaction: a prospective study in Hymenoptera venom allergic patients. Clin Exp Allergy. 2011;41(12):1777-83. [Crossref]  [PubMed]
  22. Srivastava S, Huissoon AP, Barrett V, Hackett S, Dorrian S, Cooke MW, et al. Systemic reactions and anaphylaxis with an acute serum tryptase ≥14 µg/L: retrospective characterisation of aetiology, severity and adherence to National Institute of Health and Care Excellence (NICE) guidelines for serial tryptase measurements and specialist referral. J Clin Pathol. 2014;67(7):614-9. [Crossref]  [PubMed]
  23. Wongkaewpothong P, Pacharn P, Sripramong C, Boonchoo S, Piboonpocanun S, Visitsunthorn N, et al. The utility of serum tryptase in the diagnosis of food-induced anaphylaxis. Allergy Asthma Immunol Res. 2014;6(4):304-9. [Crossref]  [PubMed]  [PMC]
  24. Vadas P, Perelman B, Liss G. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J Allergy Clin Immunol. 2013;131(1):144-9. [Crossref]  [PubMed]
  25. De Schryver S, Halbrich M, Clarke A, La Vieille S, Eisman H, Alizadehfar R, et al. Tryptase levels in children present ing with anaphylaxis: Temporal trends and associated factors. J Allergy Clin Immunol. 2016;137(4):1138-42. [Crossref]  [PubMed]
  26. Harper NJN, Cook TM, Garcez T, Lucas DN, Thomas M, Kemp H, et al. Anaesthesia, surgery, and life-threatening allergic reactions: management and outcomes in the 6th National Audit Project (NAP6). Br J Anaesth. 2018;121(1):172-88. [Crossref]
  27. Berin MC. Mechanisms that define transient versus persistent food allergy. J Allergy Clin Immunol. 2019;143(2):453-7. [Crossref]  [PubMed]  [PMC]
  28. Foster B, Schwartz LB, Devouassoux G, Metcalfe DD, Prussin C. Characterization of mast-cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol. 2002;109(2):287-93. [Crossref]  [PubMed]
  29. Lee AYS. Elevated Serum Tryptase in Non-Anaphylaxis Cases: A Concise Review. Int Arch Allergy Immunol. 2020;181(5):357-64. [Crossref]  [PubMed]
  30. Lyons JJ. Hereditary Alpha Tryptasemia: Genotyping and Associated Clinical Features. Immunol Allergy Clin North Am. 2018;38(3):483-95. [Crossref]  [PubMed]  [PMC]
  31. Sirvent AE, González C, Enríquez R, Fernández J, Millán I, Barber X, et al. Serum tryptase levels and markers of renal dysfunction in a population with chronic kidney disease. J Nephrol. 2010;23(3):282-90.
  32. Sperr WR, El-Samahi A, Kundi M, Girschikofsky M, Winkler S, Lutz D, et al. Elevated tryptase levels selectively cluster in myeloid neoplasms: a novel diagnostic approach and screen marker in clinical haematology. Eur J Clin Invest. 2009;39(10):914-23. [Crossref]  [PubMed]
  33. Gonzalez-Quintela A, Vizcaino L, Gude F, Rey J, Meijide L, Fernandez-Merino C, et al. Factors influencing serum total tryptase concentrations in a general adult population. Clin Chem Lab Med. 2010;48(5):701-6. [Crossref]  [PubMed]
  34. Min HK, Moxley G, Neale MC, Schwartz LB. Effect of sex and haplotype on plasma tryptase levels in healthy adults. J Allergy Clin Immunol. 2004;114(1):48-51. [Crossref]  [PubMed]
  35. Nassiri M, Babina M, Dölle S, Edenharter G, Ruëff F, Worm M. Ramipril and metoprolol intake aggravate human and murine anaphylaxis: evidence for direct mast cell priming. J Allergy Clin Immunol. 2015;135(2):491-9. [Crossref]  [PubMed]
  36. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185-96. [Crossref]  [PubMed]
  37. Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. The Role of Histamine and Histamine Dolu Biomarkers in Anaphylaxis Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol. 2018;9:1873. [Crossref]  [PubMed]  [PMC]
  38. Lin RY, Schwartz LB, Curry A, Pesola GR, Knight RJ, Lee HS, et al. Histamine and tryptase levels in patients with acute allergic reactions: An emergency department-based study. J Allergy Clin Immunol. 2000;106(1 Pt 1):65-71. [Crossref]  [PubMed]
  39. Zeiger RS, Yurdin DL, Colten HR. Histamine metabolism. II. Cellular and subcellular localization of the catabolic enzymes, histaminase and histamine methyl transferase, in human leukocytes. J Allergy Clin Immunol. 1976;58(1 pt. 2):172-9. [Crossref]  [PubMed]
  40. Keyzer JJ, de Monchy JG, van Doormaal JJ, van Voorst Vader PC. Improved diagnosis of mastocytosis by measurement of urinary histamine metabolites. N Engl J Med. 1983;309(26):1603-5. [Crossref]  [PubMed]
  41. Stone SF, Cotterell C, Isbister GK, Holdgate A, Brown SG. Elevated serum cytokines during human anaphylaxis: Identification of potential mediators of acute allergic reactions. J Allergy Clin Immunol. 2009;124(4):786-92.e4. [Crossref]  [PubMed]
  42. Takazawa T, Horiuchi T, Nagumo K, Sugiyama Y, Akune T, Amano Y, et al. The Japanese Epidemiologic Study for Perioperative Anaphylaxis, a prospective nationwide study: allergen exposure, epidemiology, and diagnosis of anaphylaxis during general anaesthesia. Br J Anaesth. 2023;131(1):159-69. [Crossref]  [PubMed]
  43. Tomasiak-Łozowska MM, Klimek M, Lis A, Moniuszko M, Bodzenta-Łukaszyk A. Markers of anaphylaxis a systematic review. Adv Med Sci. 2018;63(2):265-77. [Crossref]  [PubMed]
  44. Brown SG, Stone SF. Laboratory diagnosis of acute anaphylaxis. Clin Exp Allergy. 2011;41(12):1660-2. [Crossref]  [PubMed]
  45. Godfroid JJ, Heymans F, Michel E, Redeuilh C, Steiner E, Benveniste J. Platelet activating factor (PAF-acether): total synthesis of 1-O-octadecyl 2-O-acetyl sn-glycero-3-phosphoryl choline. FEBS Lett. 1980;116(2):161-4. [Crossref]  [PubMed]
  46. Gill P, Jindal NL, Jagdis A, Vadas P. Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J Allergy Clin Immunol. 2015;135(6):1424-32. [Crossref]  [PubMed]
  47. Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, et al. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010;125(5):1137-45.e6. [Crossref]  [PubMed]
  48. Balbino B, Sibilano R, Starkl P, Marichal T, Gaudenzio N, Karasuyama H, et al. Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. J Allergy Clin Immunol. 2017;139(2):584-96. e10. [Crossref]  [PubMed]  [PMC]
  49. Farr RS, Cox CP, Wardlow ML, Jorgensen R. Preliminary studies of an acid-labile factor (ALF) in human sera that inactivates platelet-activating factor (PAF). Clin Immunol Immunopathol. 1980;15(3):318-30. [Crossref]  [PubMed]
  50. Stafforini DM, Satoh K, Atkinson DL, Tjoelker LW, Eberhardt C, Yoshida H, et al. Platelet-activating factor acetylhydrolase deficiency. A missense mutation near the active site of an anti-inflammatory phospholipase. J Clin Invest. 1996;97(12):2784-91. [Crossref]  [PubMed]  [PMC]
  51. Upton JEM, Hoang JA, Leon-Ponte M, Finkelstein Y, Du YJ, Adeli K, et al. Platelet-activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children. Allergy. 2022;77(9):2665-76. [Crossref]  [PubMed]
  52. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28-35. [Crossref]  [PubMed]
  53. Pravettoni V, Piantanida M, Primavesi L, Forti S, Pastorello EA. Basal platelet-activating factor acetylhydrolase: prognostic marker of severe Hymenoptera venom anaphylaxis. J Allergy Clin Immunol. 2014;133(4):1218-20. [Crossref]  [PubMed]
  54. Piwowarek K, Rzeszotarska A, Korsak J, Juszkiewicz A, Chciałowski A, Kruszewski J. Clinical significance of plasma PAF acetylhydrolase activity measurements as a biomarker of anaphylaxis: Cross-sectional study. PLoS One. 2021;16(8):e0256168. [Crossref]  [PubMed]  [PMC]
  55. Bilò MB, Corsi A, Martini M, Danieli MG, Alia S, Di Paolo A, et al. Platelet-activating factor acetylhydrolase: A biomarker in Hymenoptera venom allergy? Allergy. 2022;77(3):1032-5. [Crossref]  [PubMed]  [PMC]
  56. Nishio H, Takai S, Miyazaki M, Horiuchi H, Osawa M, Uemura K, et al. Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med. 2005;119(6):331-4. [Crossref]  [PubMed]
  57. Zhou X, Whitworth HS, M EK, Brown TA, Goswami R, Eren E, et al. Mast Cell Chymase: A Useful Serum Marker in Anaphylaxis. Journal of Allergy and Clinical Immunology. 2011;127(2):AB143. [Crossref]
  58. Atiakshin D, Kostin A, Trotsenko I, Samoilova V, Buchwalow I, Tiemann M. Carboxypeptidase A3-A Key Component of the Protease Phenotype of Mast Cells. Cells. 2022;11(3). [Crossref]  [PubMed]  [PMC]
  59. Brown TA, Whitworth HS, Zhou XY, Lau L, Eren E, Walls AF. Mast Cell Carboxypeptidase as a Confirmatory and Predictive Marker in Allergic Reactions to Drugs. Journal of Allergy and Clinical Immunology. 2011;127(2):AB143. [Crossref]
  60. Korosec P, Turner PJ, Silar M, Kopac P, Kosnik M, Gibbs BF, Dolu Biomarkers in Anaphylaxis et al. Basophils, high-affinity IgE receptors, and CCL2 in human anaphylaxis. J Allergy Clin Immunol. 2017;140(3):750-8.e15. [Crossref]  [PubMed]  [PMC]
  61. Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ, Caughey GH. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem. 2001;276(21):18551-6. [Crossref]  [PubMed]
  62. Mochizuki A, McEuen AR, Buckley MG, Walls AF. The release of basogranulin in response to IgE-dependent and IgE-independent stimuli: validity of basogranulin measurement as an indicator of basophil activation. J Allergy Clin Immunol. 2003;112(1):102-8. [Crossref]  [PubMed]
  63. Francuzik W, Pažur K, Dalke M, Dölle-Bierke S, Babina M, Worm M. Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis. JCI Insight. 2022;7(7). [Crossref]  [PubMed]  [PMC]
  64. Nuñez-Borque E, Fernandez-Bravo S, Rodriguez Del Rio P, Alwashali EM, Lopez-Dominguez D, Gutierrez-Blazquez MD, et al. Increased miR-21-3p and miR-487b-3p serum levels during anaphylactic reaction in food allergic children. Pediatr Allergy Immunol. 2021;32(6):1296-306. [Crossref]  [PubMed]  [PMC]
  65. Francis A, Bosio E, Stone SF, Fatovich DM, Arendts G, Nagree Y, et al. Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L. Clin Exp Allergy. 2017;47(3):361-70. [Crossref]  [PubMed]
  66. Ptaschinski C, Rasky AJ, Fonseca W, Lukacs NW. Stem Cell Factor Neutralization Protects From Severe Anaphylaxis in a Murine Model of Food Allergy. Front Immunol. 2021;12:604192. [Crossref]  [PubMed]  [PMC]
  67. Khodoun M, Strait R, Orekov T, Hogan S, Karasuyama H, Herbert DR, et al. Peanuts can contribute to anaphylactic shock by activating complement. J Allergy Clin Immunol. 2009;123(2):342-51. [Crossref]  [PubMed]  [PMC]