BONE GRAFT ALTERNATIVES AND SUCCESS RATES POTENTIAL OF REGENERATIVE MEDICINEIN MAXILLOFACIAL SURGERY
Eda İzgi
Kütahya Health Sciences University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kütahya, Türkiye
İzgi E. Bone Graft Alternatives and Success Rates Potential of Regenerative Medicine in Maxillofacial Surgery. Karasu HA, ed. Advanced Technologies in Oral and Maxillofacial Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.6374.
ABSTRACT
Recent advancements in biomaterials and regenerative medicine have revolutionized oral and maxil lofacial surgery, particularly in the development of innovative bone graft alternatives and nextgener ation synthetic substitutes. Although conventional autografts and allografts are effective, they come with drawbacks like complications at the donor site and potential immune responses. Innovative solu tions such as bioactive ceramics, composite frameworks, matrices infused with growth factors, and nanostructured biomaterials have gained prominence as viable substitutes. Advanced biomaterials that can replicate the natural structure of bone, facilitate blood vessel formation, and deliver bioactive com pounds in a regulated manner hold great potential for the future. This chapter explores the evolution of bone grafting materials, emphasizing the transformative impact of regenerative technologies and hybrid biomaterials on improving clinical outcomes. Even with these advancements, ensuring ideal mechanical durability, prolonged stability, and economic feasibility continues to be a challenge.
Keywords: Biocompatible Materials; Alveolar bone grafting; Bone transplantation; Regenerative
medicine; Bone substitutes; Dentistry, Operative
Kaynak Göster
Referanslar
- Festas AJ, Ramos A, Davim JP. Medical devices biomaterials - A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(1):218-228. [Crossref]
- Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules. 2021;26(10). [Crossref] [PubMed] [PMC]
- Richards RG, Moriarty TF, Miclau T, Mcclellan RT, Grainger DW. Advances in Biomaterials and Surface Technologies. Journal of orthopaedic trauma. 2012; 26(12), 703-707. [Crossref] [PubMed]
- Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:1-18. [Crossref] [PubMed] [PMC]
- Elsalanty ME, Genecov DG. Bone Grafts in Craniofacial Surgery. Craniomaxillofacial Trauma Reconstr. 2009;2:125-134. [Crossref] [PubMed] [PMC]
- Cha HS, Kim JW, Hwang JH, Ahn KM. Frequency of bone graft in implant surgery. Maxillofac Plast Reconstr Surg. 2016;38(1). [Crossref] [PubMed] [PMC]
- Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials - From space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery. 2012;40(8):706-718. [Crossref] [PubMed]
- Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials. 2023;16(11). [Crossref] [PubMed] [PMC]
- Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114-124. [Crossref] [PubMed] [PMC]
- Pikos M. Block Autografts for Localized Ridge Augmentation Part II. The Posterior Mandible. Implant Dent. 2000;9(1):67-75. [Crossref] [PubMed]
- Sanz M, Vignoletti F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dental Materials. 2015;31(6):640-647. [Crossref] [PubMed]
- Miron RJ. Optimized bone grafting. Periodontol 2000. 2024;94(1):143-160. [Crossref] [PubMed]
- Zamborsky R, Svec A, Bohac M, Kilian M, Kokavec M. Infection in bone allograft transplants. Experimental and Clinical Transplantation. 2016;14(5):484-490. [Link]
- Yazdi FK, Mostaghni E, Moghadam SA, Faghihi S, Monabati A, Amid R. A comparison of the healing capabilities of various grafting materials in critical-size defects in guinea pig calvaria. Int J Oral Maxillofac Implants. 2013;28(5):1370-1376. [Crossref] [PubMed]
- Wallace S, Gellin R. Clinical evaluation of freeze-dried cancellous block allografts for ridge augmentation and implant placement in the Maxilla. Implant Dent. 2010;19(4):272-279. [Crossref] [PubMed]
- Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering. Bone Joint Res. 2018;7(3):232-243. [Crossref] [PubMed] [PMC]
- Lee JH, Yi GS, Lee JW, Kim DJ. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications. J Periodontal Implant Sci. 2017;47(6):388-401. [Crossref] [PubMed] [PMC]
- Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1). [Crossref] [PubMed] [PMC]
- García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112-121. [Crossref] [PubMed]
- Hönig JF, Merten HA, Heinemann DE. Risk of transmission of agents associated with Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Plast Reconstr Surg. 1999;103(4):1324-1325. [Crossref] [PubMed]
- Bannister SR, Powell CA. Foreign Body Reaction to Anorganic Bovine Bone and Autogenous Bone With Platelet-Rich Plasma in Guided Bone Regeneration. J Periodontol. 2008;79(6):1116-1120. [Crossref] [PubMed]
- Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol. 2022;13. [Crossref] [PubMed] [PMC]
- Wong RWK, Rabie ABM. Effect of Gusuibu Graft on Bone Formation. Journal of Oral and Maxillofacial Surgery. 2006;64(5):770-777. [Crossref] [PubMed]
- Li Y. Local use of iontophoresis with traditional Chinese herbal medicine, e.g., Gu-Sui-Bu (Rhizoma Drynariae) may accelerate orthodontic tooth movement. Dent Hypotheses. 2013;4(2):50-52. [Crossref]
- Sun JS, Lin CY, Dong GC, Sheu SY, Lin FH, Chen LT, et al. The Effect of Gu-Sui-Bu (Drynaria Fortunei J. Sm) on Bone Cell Activities. Biomaterials. 2002;23(16):3377-3385. [Crossref] [PubMed]
- Bhatt RA, Rozental TD. Bone Graft Substitutes. Hand Clin. 2012;28(4):457-468. [Crossref] [PubMed]
- Riedel C, Zimmermann EA, Zustin J, Niecke M, Amling M,Grynpas M, et al. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone. J Biomed Mater Res A. 2017;105(2):433-442. [Crossref] [PubMed]
- Damien E. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. Journal of Applied Biomaterials & Biomechanics. 2004;2:65-73. [Link]
- Galindo-Moreno P, Padial-Molina M, Lopez-Chaichio L, Gutiérrez-Garrido L, Martín-Morales N, O'Valle F. Algae-derived hydroxyapatite behavior as bone biomaterial in comparison with anorganic bovine bone: A split-mouth clinical, radiological, and histologic randomized study in humans. Clin Oral Implants Res. 2020;31(6):536-548. [Crossref] [PubMed]
- Kolk A, Handschel J, Drescher W, Rothamel D, Kloss F, Blessman M, et al. Current trends and future perspectives of bone substitute materials - From space holders to innovative biomaterials. Journal of Cranio-Maxillofacial Surgery. 2012;40(8):706-718. [Crossref] [PubMed]
- Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite--Past, Present, and Future in Bone Regeneration. Bone Tissue Regen Insights. 2016;7. [Crossref]
- Rh. Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater. 2018;106(6):2493-2512. [Crossref] [PubMed]
- Gallinetti S, Canal C, Ginebra MP. Development and characterization of biphasic hydroxyapatite/β-TCP cements. Journal of the American Ceramic Society. 2014;97(4):1065-1073. [Crossref] [PubMed] [PMC]
- Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-247. [Crossref] [PubMed] [PMC]
- Esfahanizadeh N, Nourani MR, Bahador A, Akhondi N, Montazeri M. The Anti-biofilm Activity of Nanometric Zinc doped Bioactive Glass against Putative Periodontal Pathogens: An in vitro Study. Biomedical Glasses. 2020;4(1):95-107. [Crossref]
- Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass applications in dentistry. Int J Mol Sci. 2019;20(23). [Crossref] [PubMed] [PMC]
- Xie C, Lu H, Li W, Chen FM, Zhao YM. The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci Mater Med. 2012;23(3):853-862. [Crossref] [PubMed]
- O'Hara RM, Dunne NJ, Orr JF, Buchanan FJ, Wilcox RK, Barton DC. Optimisation of the mechanical and handling properties of an injectable calcium phosphate cement. J Mater Sci Mater Med. 2010;21(8):2299-2305. [Crossref] [PubMed]
- Burguera EF, Xu HHK, Sun L. Injectable calcium phosphate cement: Effects of powder-to-liquid ratio and needle size. J Biomed Mater Res B Appl Biomater. 2008;84(2):493-502. [Crossref] [PubMed] [PMC]
- Xu HHK, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017;5(1):1-19. [Crossref] [PubMed] [PMC]
- Lyu C, Shao Z, Zou D, Lu J. Ridge Alterations following Socket Preservation Using a Collagen Membrane in Dogs. Biomed Res Int. 2020;2020:1-9. [Crossref] [PubMed] [PMC]
- Evaniew N, Tan V, Parasu N, Jurriaans E, Finlay K, Deheshi B, et al. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics. 2013;36(2). [Crossref] [PubMed]
- Baranes D, Kurtzman GM. Biphasic Calcium Sulfate as an Alternative Grafting Material in Various Dental Applications. J Oral Implantol. 2019;45(3):247-255. [Crossref] [PubMed]
- Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial? J Clin Periodontol. 2019;46(S21):92-102. [Crossref] [PubMed]
- Yan J, Li J, Runge MB, Dadsetan M, Chen Q, Lu L, et al. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. J Biomater Sci Polym Ed. 2011;22(4-6):489-504. [Crossref] [PubMed] [PMC]
- Xie Y, Li S, Zhang T, Wang C, Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci. 2020;12(1). [Crossref] [PubMed] [PMC]
- Briguglio F, Falcomatà D, Marconcini S, Fiorillo L, Briguglio R, Farronato D. The use of titanium mesh in guided bone regeneration: A systematic review. Int J Dent. 2019;2019. [Crossref] [PubMed] [PMC]
- Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone®. J Biomed Mater Res A. 2009;91(2):557-566. [Crossref] [PubMed]
- Eldibany RM, Shokry MM. The effect of Nanobone® in combination with platelet rich fibrin on bone regeneration following enucleation of large mandibular cysts. Tanta Dental Journal. 2014;11(2):100-108. [Crossref]
- Fairbairn P, Leventis M. Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study. Int J Dent. 2015;2015:1-8. [Crossref] [PubMed] [PMC]
- Oliveira ÉR, Nie L, Podstawczyk D, et al. Advances in growth factor delivery for bone tissue engineering. Int J Mol Sci. 2021;22(2):1-33. [Crossref] [PubMed] [PMC]
- Sallent I, Capella-Monsonís H, Procter P, et al. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol. 2020;8. [Crossref] [PubMed] [PMC]
- Cicciù M. Growth factor applied to oral and regenerative surgery. Int J Mol Sci. 2020;21(20):1-4. [Crossref] [PubMed] [PMC]
- El-Chaar ES. Demineralized bone matrix in extraction sockets: A clinical and histologic case series. Implant Dent. 2013;22(2):120-126. [Crossref] [PubMed]