Bone Interventions: Ablation and Embolization in the Knee and Shoulder

radyoloji-17-1-kapak-2.jpg

Mehmet Fatih İNECİKLİa , Ömer Fatih NASa
aBursa Uludağ University Faculty of Medicine, Department of Radiology, Division Interventional Radiology, Bursa, Türkiye

İnecikli MF, Nas ÖF. Bone interventions: Ablation and embolization in the knee and shoulder. In: Üstünsöz B, ed. Pain Management in Interventional Radiology. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.15-26.

ABSTRACT
Knees and shoulders are among the most frequently used joints in daily life. Therefore, it is more prone to damage by injury, trauma or wear than many joints. Knee and shoulder pain are common complaints that can be felt and affected by people at any age. In some cases, self-healing pain may occur due to ordinary situations such as excessive use of the joint, strain or trying for the first time movements that have not been done before. However, especially if the pain lasts longer than a week, the possibility of an underlying joint disease increases. If left untreated, it can worsen and cause serious problems that limit movement. When making a treatment plan for knee and shoulder pain, the factor causing the pain should be clearly revealed. Minimally invasive procedures are frequently used in knee and shoulder pain and are in the field of Interventional Radiology. It includes procedures such as intra-articular injections, percutaneous nerve modulation (neuromodulation) or ablation, ablations for benign and malignant pathologies in bone and joint-forming structures, and endovascular embolizations. These treatments aim to control pain and inflammation, and improve knee and shoulder joint mobility, range of motion, and function. The purpose of this review is to show the technical aspects, indications and methodology of local and endovascular treatments performed by Interventional Radiology for knee and shoulder pain and to provide up-to-date contributions.

Keywords: Knee joint; shoulder joint; arthralgia; pain management; radiology, interventional

ÖZET
Dizler ve omuzlar günlük yaşamda en sık kullanılan eklemler arasında yer alır. Bu nedenle incinme, yaralanma veya yıpranma ile hasarlanmaya birçok ekleme oranla daha yatkındırlar. Diz ve omuz ağrısı, insanın her yaşta hissedebileceği, etkilenebileceği ve yaygın olarak görülen şikayetlerdendir. Bazı durumlarda eklemin aşırı kullanımı, zorlanması veya daha önceden yapılmamış hareketlerin ilk kez denenmesi gibi olağan durumlara bağlı olarak ortaya çıkan ve kendiliğinden iyileşen ağrılar söz konusu olabilir. Fakat özellikle ağrının bir haftadan uzun sürmesi halinde durumun altında yatan bir eklem hastalığının görülme olasılığı artar. Tedavi edilmediğinde kötüleşerek hareketi kısıtlayacak boyutta ciddi sorunlara yol açabilir. Diz ve omuz ağrıları için tedavi planı yapılırken öncelikle ağrıya neden olan faktör net olarak ortaya konulmalıdır. Minimal invaziv işlemler, diz ve omuz ağrısında sıklıkla uygulanan yöntemlerdendir ve Girişimsel Radyoloji’nin ilgi alanına girmektedir. Eklem içi enjeksiyonlar, perkütan sinir modülasyonu (nöromodülasyon) veya ablasyonu, kemik ve eklemleri oluşturan yapılardaki benign ve malign patolojilere yönelik ablasyonlar ve endovasküler embolizasyonlar gibi işlemleri içerir. Bu tedaviler, ağrı ve iltihabı kontrol etmeyi, diz ve omuz eklem hareketliliğini, hareket açıklığını ve işlevlerini iyileştirmeyi hedeflemektedir. Bu derlemenin amacı, diz ve omuz ağrılarında Girişimsel Radyoloji tarafından gerçekleştirilen lokal ve endovasküler tedavilerin teknik yönlerini, endikasyonlarını ve metodolojisini göstermek ve güncel katkılar sağlamaktır.

Anahtar Kelimeler: Diz eklemi; omuz eklemi; artralji; ağrı yönetimi; radyoloji, girişimsel

Referanslar

  1. Filippiadis D, Charalampopoulos g, Mazioti A, Alexopoulou E, Vrachliotis T, Brountzos E, et al. Interventional radiology techniques for pain reduction and mobility improvement in patients with knee osteoarthritis. Diagn Interv Imag- ing. 2019;100(7-8):391-400. [Crossref]  [PubMed]
  2. Köken İŞ, Eyigör C. Interventional pain management methods in palliation of rheumatic pains. Ege J Med. 2019;58 Suppl:22-6. [Crossref]
  3. hunter DJ, guermazi A. Imaging techniques in osteoarthritis. PM R. 2012;4(5 Suppl):S68-74. [Crossref]  [PubMed]
  4. Boesen M, Ellegaard K, henriksen M, gudbergsen h, hansen P, Bliddal h, et al. osteoarthritis year in review 2016: imaging. osteoarthritis Cartilage. 2017;25(2):216-26. [Crossref]  [PubMed]
  5. Unlu EN, Turhan Y, Kos DM, Safak AA. Assessment of anterior subcutaneous hypersignal on proton-density-weighted MR imaging of the knee and rela- tionship with anterior knee pain. Diagn Interv Imaging. 2017;98(4):339-45. [Crossref]  [PubMed]
  6. Mourad C, Laperre K, halut M, galant C, Van Cauter M, Vande Berg BC. Fused micro-computed tomography (μCT) and histological images of bone specimens. Diagn Interv Imaging. 2018;99(7-8):501-5. [Crossref]  [PubMed]
  7. Dai WL, Zhou Ag, Zhang h, Zhang J. Efficacy of Platelet-Rich Plasma in the Treatment of Knee osteoarthritis: A Meta-analysis of Randomized Controlled Trials. Arthroscopy. 2017;33(3):659-70.e1. [Crossref]  [PubMed]
  8. de Rooij M, van der Leeden M, Cheung J, van der Esch M, häkkinen A, haverkamp D, et al. Efficacy of Tailored Exercise Therapy on Physical Func- tioning in Patients With Knee osteoarthritis and Comorbidity: A Randomized Controlled Trial. Arthritis Care Res (hoboken). 2017;69(6):807-16. [Crossref]  [PubMed]
  9. Filippiadis D, Velonakis g, Mazioti A, Konstantos C, Brountzos E, Kelekis N, et al. Intra-articular application of pulsed radiofrequency combined with vis- cosupplementation for improvement of knee osteoarthritis symptoms: a sin- gle centre prospective study. Int J hyperthermia. 2018;34(8):1265-9. [Crossref]  [PubMed]
  10. Skou ST, Roos EM, Simonsen o, Laursen MB, Rathleff MS, Arendt-Nielsen L, et al. The efficacy of non-surgical treatment on pain and sensitization in pa- tients with knee osteoarthritis: a pre-defined ancillary analysis from a ran- domized controlled trial. osteoarthritis Cartilage. 2016;24(1):108-16. [Crossref]  [PubMed]
  11. Smith NA, Parsons N, Wright D, hutchinson C, Metcalfe A, Thompson P, et al. A pilot randomized trial of meniscal allograft transplantation versus per- sonalized physiotherapy for patients with a symptomatic meniscal deficient knee compartment. Bone Joint J. 2018;100-B(1):56-63. [Crossref]  [PubMed]
  12. Conrozier T, Monfort J, Chevalier X, Raman R, Richette P, Diracoglu D, et al. EURoVISCo Recommendations for optimizing the clinical results of visco- supplementation in osteoarthritis. CART 2018 [1947603518783455]. [Crossref]  [PubMed]  [PMC]
  13. goldman DT, Piechowiak R, Nissman D, Bagla S, Isaacson A. Current Con- cepts and Future Directions of Minimally Invasive Treatment for Knee Pain. Curr Rheumatol Rep. 2018;20(9):54. [Crossref]  [PubMed]
  14. Caldwell JR. Intra-articular corticosteroids. guide to selection and indications for use. Drugs. 1996;52(4):507-14. [Crossref]  [PubMed]  [PMC]
  15. ostergaard M, halberg P. Intra-articular corticosteroids in arthritic disease: a guide to treatment. BioDrugs. 1998;9(2):95-103. [Crossref]  [PubMed]
  16. Creamer P. Intra-articular corticosteroid treatment in osteoarthritis. Curr opin Rheumatol. 1999;11(5):417-21. [Crossref]  [PubMed]
  17. Douglas RJ. Corticosteroid injection into the osteoarthritic knee: drug selection, dose, and injection frequency. Int J Clin Pract. 2012;66(7):699-704. [Crossref]  [PubMed]
  18. Vaishya R, Pandit R, Agarwal AK, Vijay V. Intra-articular hyaluronic acid is superior to steroids in knee osteoarthritis: A comparative, randomized study. J Clin orthop Trauma. 2017;8(1):85-8. [Crossref]  [PubMed]  [PMC]
  19. Liu Sh, Dubé CE, Eaton CB, Driban JB, McAlindon TE, Lapane KL. Longterm Effectiveness of Intraarticular Injections on Patient-reported Symptoms in Knee osteoarthritis. J Rheumatol. 2018;45(9):1316-24. [Crossref]  [PubMed]  [PMC]
  20. Balazs EA, Watson D, Duff IF, Roseman S. hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human flu- ids. Arthritis Rheum. 1967;10(4):357-76. [Crossref]  [PubMed]
  21. gibbs DA, Merrill EW, Smith KA, Balazs EA. Rheology of hyaluronic acid. Biopolymers. 1968;6(6):777-91. [Crossref]  [PubMed]
  22. Fraser JR, Laurent TC, Laurent UB. hyaluronan: its nature, distribution, func- tions and turnover. J Intern Med. 1997;242(1):27-33. [Crossref]  [PubMed]
  23. Dahl LB, Dahl IM, Engström-Laurent A, granath K. Concentration and mo- lecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis. 1985;44(12): 817-22. [Crossref]  [PubMed]  [PMC]
  24. Pelletier JP, Martel-Pelletier J. The pathophysiology of osteoarthritis and the implication of the use of hyaluronan and hylan as therapeutic agents in vis- cosupplementation. J Rheumatol Suppl. 1993;39:19-24.
  25. Band PA, heeter J, Wisniewski hg, Liublinska V, Pattanayak CW, Karia RJ, et al. hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. osteoarthritis Cartilage. 2015;23(1):70-6. [Crossref]  [PubMed]  [PMC]
  26. Richards MM, Maxwell JS, Weng L, Angelos Mg, golzarian J. Intra-articular treatment of knee osteoarthritis: from anti-inflammatories to products of re- generative medicine. Phys Sportsmed. 2016;44(2):101-8. [Crossref]  [PubMed]  [PMC]
  27. Delbarre A, Amor B, Bardoulat I, Tetafort A, Pelletier-Fleury N. Do intra-artic- ular hyaluronic acid injections delay total knee replacement in patients with osteoarthritis - A Cox model analysis. PLoS one. 2017;12(11):e0187227. [Crossref]  [PubMed]  [PMC]
  28. Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7):7081-92. [Crossref]  [PubMed]  [PMC]
  29. Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54-67. [Crossref]  [PubMed]  [PMC]
  30. Shen L, Yuan T, Chen S, Xie X, Zhang C. The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. J or- thop Surg Res. 2017;12(1):16. [Crossref]  [PubMed]  [PMC]
  31. Rayegani SM, Raeissadat SA, Taheri MS, Babaee M, Bahrami Mh, Eliaspour D, et al. Does intra articular platelet rich plasma injection improve function, pain and quality of life in patients with osteoarthritis of the knee? A random- ized clinical trial. orthop Rev (Pavia). 2014;6(3):5405. [Crossref]
  32. Kabiri A, Esfandiari E, Esmaeili A, hashemibeni B, Pourazar A, Mardani M. Platelet-rich plasma application in chondrogenesis. Adv Biomed Res. 2014;3:138. [Crossref]  [PubMed]  [PMC]
  33. Filardo g, Kon E, Roffi A, Di Matteo B, Merli ML, Marcacci M. Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Trauma- tol Arthrosc. 2015;23(9):2459-74. [Crossref]  [PubMed]  [PMC]
  34. Lopa S, Colombini A, Moretti M, de girolamo L. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences. Knee Surg Sports Traumatol Arthrosc. 2019;27(6):2003-20. [Crossref]  [PubMed]  [PMC]
  35. Ranmuthu CDS, Ranmuthu CKI, Khan WS. Evaluating the Current Literature on Treatments Containing Adipose-Derived Stem Cells for osteoarthritis: a Progress Update. Curr Rheumatol Rep. 2018;20(11):67. [Crossref]  [PubMed]
  36. Al-Najar M, Khalil h, Al-Ajlouni J, Al-Antary E, hamdan M, Rahmeh R, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase I/II study. J orthop Surg Res. 2017;12(1):190. [Crossref]  [PubMed]  [PMC]
  37. Arendt-Nielsen L, Jiang gL, Degryse R, Turkel CC. Intra-articular onabotu- linumtoxinA in osteoarthritis knee pain: effect on human mechanistic pain bio- markers and clinical pain. Scand J Rheumatol. 2017;46(4):303-16. [Crossref]  [PubMed]
  38. Lopes de Jesus CC, Dos Santos FC, de Jesus LMoB, Monteiro I, Sant'Ana MSSC, et al. Comparison between intra-articular ozone and placebo in the treatment of knee osteoarthritis: A randomized, double-blinded, placebo-con- trolled study. PLoS one. 2017;12(7):e0179185. [Crossref]  [PubMed]  [PMC]
  39. guermazi A, Kalsi g, Niu J, Crema MD, Copeland Ro, orlando A, et al. Struc- tural effects of intra-articular TgF-β1 in moderate to advanced knee os- teoarthritis: MRI-based assessment in a randomized controlled trial. BMC Musculoskelet Disord. 2017;18(1):461. [Crossref]  [PubMed]  [PMC]
  40. Lloyd JW, Barnard JD, glynn CJ. Cryoanalgesia. A new approach to pain re- lief. Lancet. 1976;2(7992):932-4. [Crossref]  [PubMed]
  41. Choi WJ, hwang SJ, Song Jg, Leem Jg, Kang YU, Park Ph, Shin JW. Ra- diofrequency treatment relieves chronic knee osteoarthritis pain: a double- blind randomized controlled trial. Pain. 2011;152(3):481-7. [Crossref]  [PubMed]
  42. hanakawa T. Neural mechanisms underlying deafferentation pain: a hypoth- esis from a neuroimaging perspective. J orthop Sci. 2012;17(3):331-5. [Crossref]  [PubMed]  [PMC]
  43. guillot X, Martin h, Seguin-Py S, Maguin-gaté K, Moretto J, Totoson P, et al. Local cryotherapy improves adjuvant-induced arthritis through down-regula- tion of IL-6 / IL-17 pathway but independently of TNFα. PLoS one. 2017;12(7):e0178668. [Crossref]  [PubMed]  [PMC]
  44. Kishore S, Sheira D, Malin ML, Trost DW, Mandl LA. Transarterial emboliza- tion for the treatment of chronic musculoskeletal pain: A systematic review of indications, safety and efficacy. ACR open Rheumatol. 2022;4(3):209-17. [Crossref]  [PubMed]  [PMC]
  45. okuno Y, Korchi AM, Shinjo T, Kato S, Kaneko T. Midterm Clinical outcomes and MR Imaging Changes after Transcatheter Arterial Embolization as a Treatment for Mild to Moderate Radiographic Knee osteoarthritis Resistant to Conservative Treatment. J Vasc Interv Radiol. 2017;28(7):995-1002. [Crossref]  [PubMed]
  46. Maroldi R, Nicolai P, Antonelli AR. Imaging in treatment planning for sinonasal diseases. Berlin: Springer; 2005 (e-book). [Crossref]
  47. Meyers SP. MRI of bone and soft tissue tumors and tumorlike lesions: differ- ential diagnosis and atlas. Stuttgart: Thieme; 2008. [Crossref]
  48. Zadik Y, Aktaş A, Drucker S, Nitzan DW. Aneurysmal bone cyst of mandibu- lar condyle: a case report and review of the literature. J Craniomaxillofac Surg. 2012;40(8):e243-8. [Crossref]  [PubMed]
  49. Arrigoni F, Bruno F, Zugaro L, Natella R, Cappabianca S, Russo U, et al. De- velopments in the management of bone metastases with interventional radi- ology. Acta Biomed. 2018;89(1-S):166-74. [Crossref]
  50. Kurup AN, Callstrom MR. Image-guided percutaneous ablation of bone and soft tissue tumors. Semin Intervent Radiol. 2010;27(3):276-84. [Crossref]  [PubMed]  [PMC]
  51. Foster RC, Stavas JM. Bone and soft tissue ablation. Semin Intervent Ra- diol. 2014;31(2):167-79. [Crossref]  [PubMed]  [PMC]
  52. Kelekis A, Cornelis Fh, Tutton S, Filippiadis D. Metastatic osseous Pain Con- trol: Bone Ablation and Cementoplasty. Semin Intervent Radiol. 2017;34(4): 328-36. [Crossref]  [PubMed]  [PMC]
  53. Palussière J, Pellerin-guignard A, Descat E, Cornélis F, Dixmérias F. Ra- diofrequency ablation of bone tumours. Diagn Interv Imaging. 2012;93(9):660-4. [Crossref]  [PubMed]
  54. Masciocchi C, Arrigoni F, La Marra A, Mariani S, Zugaro L, Barile A. Treatment of focal benign lesions of the bone: MRgFUS and RFA. Br J Radiol. 2016;89(1066):20150356. [Crossref]  [PubMed]  [PMC]
  55. Callstrom MR, Atwell TD, Charboneau JW, Farrell MA, goetz MP, Rubin J, et al. Painful metastases involving bone: percutaneous image-guided cryoab- lation--prospective trial interim analysis. Radiology. 2006;241(2):572-80. [Crossref]  [PubMed]
  56. Liberman B, gianfelice D, Inbar Y, Beck A, Rabin T, Shabshin N, et al. Pain palliation in patients with bone metastases using MR-guided focused ultra- sound surgery: a multicenter study. Ann Surg oncol. 2009;16(1):140-6. [Crossref]  [PubMed]
  57. Son hY, An SY, Kim EY, Ahn SB, Lee BC. Selective embolization for hyper- vascular metastasis from differentiated thyroid cancer: a case series. J Med Case Rep. 2014;8:405. [Crossref]  [PubMed]  [PMC]
  58. Lopera JE. Embolization in Trauma: Review of Basic Principles and Tech- niques. Semin Intervent Radiol. 2021;38(1):18-33. [Crossref]  [PubMed]  [PMC]
  59. Kord A, Kuwahara JT, Rabiee B, Ray CE Jr. Basic Principles of Trauma Em- bolization. Semin Intervent Radiol. 2021;38(1):144-52. [Crossref]  [PubMed]  [PMC]