Breast Cancer

Dr. Hatice BAŞARAN GÖKŞEN1
Assoc. Prof. Dr. Alaettin ARSLAN2

1Kayseri City Education and Research Hospital, Department of Radiation Oncology, Kayseri, Türkiye
2Kayseri City Education and Research Hospital, Department of Radiation Oncology, Kayseri, Türkiye

ABSTRACT

The rate and possibility of early diagnosis of breast cancer, which continues to be at the top in terms of fre- quency in women, is increasing day by day. Especially thanks to early diagnosis, the survival of patients has been extended, and in this cancer-free process, limiting the side effects secondary to the treatments the patient receives and improving the quality of life have become the secondary main goal. In this way, new modalities specifically aimed at reducing the side effects of treatments (intensity-modulated and arc treat- ments in radiotherapy, targeted treatments and hormonotherapy’s in chemotherapy) have been validated and are being implemented. However, research continues modalities that support quality of life. Life-regulating modalities such as daily activity, diet, and psychological support are of great importance in the breast cancer group with a long-expected survival.

We aimed to shed light on this issue in terms of micronutrients, accompanied by controversial results and studies on the relationship between nutrition and cancer.

Keywords: Breast neoplasms; Micronutrients; Vitamins; Minerals

Referanslar

  1. Cancer Stat Facts: Common Cancer Sites [Internet]. (accessed on 25 April 2024). [Link]
  2. About Breast Cancer in Men. Johns Hopkins Medicine. 2 July 2020.(accessed on 25 April 2024). [Link]
  3. Łukasiewicz, S., Czeczelewski, M, Forma, A., Baj, J, Sitarz, R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers. 2021;13(17):4287. [Crossref]  [PubMed]
  4. Redfern CPF. Vitamin A and its natural derivatives. Methods Enzymol. 2020;637:1-25 [Crossref]  [PubMed]
  5. LiverTox: Clinical and Research Information on Drug-In- duced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [PubMed]
  6. Carazo, A, Macáková K, Matoušová K, Krčmová L.K, Protti M, Mladěnka P. Vitamin A Update: Forms, Sources, Kinet- ics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients. 2021;13(5):1703. [Crossref]  [PubMed]
  7. Chen Q, Ross A.C. All-Trans-Retinoic Acid and the Glyco- lipid -Galactosylceramide Combined Reduce Breast Tumor Growth and Lung Metastasis in a 4T1 Murine Breast Tumor Model. Nutr Cancer. 2012; 64(8): 1219-1227. [Crossref]  [PubMed]
  8. Eliassen AH, Hendrickson SJ, Brinton LA, Buring JE, Cam- pos H, Dai Q, et al. Circulating Carotenoids and Risk of Breast Cancer: Pooled Analysis of Eight Prospective Studies. J Natl Cancer Inst. 2012;104(24):1905-1916. [Crossref]  [PubMed]
  9. He J, Gu Y, Zhang S. Vitamin A and Breast Cancer Survival: A Systematic Review and Meta-analysis. Clin Breast Can- cer.2018;18. e1389-e1400. [Crossref]  [PubMed]
  10. Eliassen AH, Liao X, Rosner B, Tamimi RM, Tworoger SS, Hankinson SE. Plasma carotenoids and risk of breast can- cer over 20 y of follow-up. Am J Clin Nutr. 2015;-101(6): 1197-1205. [Crossref]  [PubMed]
  11. Jain M, Miller AB, To T. Premorbid Diet and the Progno- sis of Women with Breast Cancer. J Natl Cancer Inst. 1994; 86(18):1390-1397. [Crossref]  [PubMed]
  12. Stevens VL, McCullough ML, Pavluck AL, Talbot JT, Fei- gelson HS, Thun MJ, et al. Association of Polymorphisms in One-Carbon Metabolism Genes and Postmenopaus-al Breast Cancer Incidence. Cancer Epidemiol. Biomark. Prev. 2007;16(6):1140-1147. [Crossref]  [PubMed]
  13. Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vita- min B12 in Foods, Food Supplements, and Medicines-A Re- view of Its Role and Properties with a Focus on Its Stability. Molecules 2022;28(1):240. [Crossref]  [PubMed]
  14. Yu L, Tan Y, Zhu L Dietary vitamin B2 intake and breast cancer risk: A systematic review and meta-analysis. Arch Gynecol Obstet. 2017;295(3):721-729. [Crossref]  [PubMed]
  15. Wu W, Kang S, Zhang D. Association of vitamin B6, vitamin B12 and methionine with risk of breast cancer: A dose-re- sponse meta-analysis. Br J Cancer. 2013;109(7):1926-1944. [Crossref]  [PubMed]
  16. Kim S.J, Zhang C.X.W, Demsky R, Armel S, Kim Y.-I, Narod S.A, et al. Folic acid supplement use and breast cancer risk in BRCA1 and BRCA2 mutation carriers: A case-control study. Breast Cancer Res. Treat. 2019;174(3):741-748. [Crossref]  [PubMed]
  17. Sram R.J, Binkova B, Rossner P. Vitamin C for DNA damage prevention. Mutat Res. 2012;733(1-2):39-49. [Crossref]  [PubMed]
  18. Frei B, Birlouez-Aragon I, Lykkesfeldt J. Authors' perspec- tive: What is the optimum intake of vitamin C in humans? Crit. Rev. Food Sci. Nutr. 2012; 52(9): 815-829. [Crossref]  [PubMed]
  19. Chen Q, Espey M.G, Sun A.Y, Pooput C, Kirk K.L, Krishna M.C, et al. Pharmacologic doses of ascorbate act as a prooxi- dant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105(32):11105-11109. [Crossref]  [PubMed]
  20. Kouakanou L, Peters C, Brown C.E, Kabelitz D, Wang L.D. Vitamin C From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy? Front Immunol. 2021; 12:12:765906. [Crossref]  [PubMed]
  21. Hong S.-W, Jin D.-H, Hahm E.-S, Yim S.-H, Lim J.-S, et al. Ascorbate (vitamin C) induces cell death through the apopto- sis-inducing factor in human breast cancer cells. Oncol Rep. 2007;18(4):811-815. [Link]
  22. Li Y, Lin Q, Lu X, Li W. Post-Diagnosis use of Antioxi- dant Vitamin Supplements and Breast Cancer Prognosis: A Systematic Review and Meta-Analysis. Clin Breast Cancer 2021; 21(6): 477-485. [Crossref]  [PubMed]
  23. Harris H.R, Bergkvist L, Wolk A. Vitamin C intake and breast cancer mortality in a cohort of Swedish women. Br J Cancer. 2013;109(1):257-264. [Crossref]  [PubMed]
  24. Schoenfeld J.D, Sibenaller Z.A, Mapuskar K.A, Wag- ner B.A, Cramer-Morales K.L, et al. O2 •− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Can- cer Cells to Pharmacological Ascorbate. Cancer Cell. 2017;32(2):487-500. [Crossref]  [PubMed]
  25. Welsh, J. Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol. Cell. Endocrinol. 2017; 453: 88-95. [Crossref]  [PubMed]
  26. Manousaki D, Richards J.B. Low vitamin D levels as a risk factor for cancer. BMJ 2017; 359: j4952. [Crossref]  [PubMed]
  27. Thabet R.H, Gomaa A.A, Matalqah L.M, Shalaby E.M. Vita- min D:An essential adjuvant therapeutic agent in breast cancer. J Int Med Res. 2022;50(7): 030006052211138. [Crossref]  [PubMed]
  28. Pludowski P, Grant W.B, Karras S.N, Zittermann A, Pil S. Vitamin D Supplementation: A Review of the Evidence Arguing for a Daily Dose of 2000 International Units (50 µg) of Vitamin D for Adults in the General Population. Nutrients. 2024;16(3):391. [Crossref]  [PubMed]
  29. Cauley J.A, Chlebowski R.T, Wactawski-Wende J, Robbins J.A, Rodabough R.J, et al. Calcium Plus Vitamin D Supple- mentation and Health Outcomes Five Years After Active Intervention Ended: The Women's Health Initiative. J. Wom- en's Health 2013;22(11):915-929. [Crossref]  [PubMed]
  30. Manson J.E, Cook N.R, Lee I.-M, Christen W, Bassuk S.S, Mora S, et al. Vitamin D Supplements and Preven- tion of Cancer and Cardiovascular Disease. N Engl J Med. 2019;380(1):33-44. [Crossref]  [PubMed]
  31. Visvanathan K, Mondul, A.M Zeleniuch-Jacquotte A, Wang M, Gail M.H, Yaun S.S, et al. Circulating vitamin D and breast cancer risk: An international pooling project of 17 cohorts. Eur J Epidemiol. 2023;38(1):11-29. [Link]
  32. Forma A, Grunwald A, Zembala P, Januszewski P, Brachet A, Zembala R, et al. Micronutrient Status and Breast Can- cer: A Narrative Review. Int J Mol Sci 2024; 2;25(9):4968. [Crossref]  [PubMed]
  33. Traber, M.G.; Manor, D. Vitamin E. Adv Nutr. 2012; 3(3): 330-331. [Crossref]  [PubMed]
  34. Idriss M, Younes M, Abou Najem S, Hodroj M.H, Fakhoury R, Rizk S. Gamma-Tocotrienol Synergistically Promotes the Anti-proliferative and Pro-apoptotic Effects of Etoposide on Breast Cancer Cell Lines. Curr Mol Pharmacol. 2022;15(7): 980-986. [Crossref]  [PubMed]
  35. Kline K, Yu W, Sanders B.G. Vitamin E and breast cancer. J Nutr. 2004; 134(12 Suppl): 3458S-3462S. [Crossref]  [PubMed]
  36. Algayadh I.G, Dronamraju V, Sylvester P.W. Role of Rac1/ WAVE2 Signaling in Mediating the Inhibitory Effects of γ-Tocotrienol on Mammary Cancer Cell Migration and In-vasion. Biol Pharm Bull. 2016; 39(12): 1974-1982. [Crossref]  [PubMed]
  37. Eljazzar S, Abu-Hijleh H, Alkhatib D, Sokary S, Ismail S, Al-Jayyousi G.F, et al. The Role of Copper Intake in the De- velopment and Management of Type 2 Diabetes: A System- atic Review. Nutrients 2023, 15(7), 1655. [Crossref]  [PubMed]
  38. Huang T, Liu Y, Li J, Shi B, Shan Z, Shi Z, et al. Insights into prognosis and immune infiltration of cuproptosis-related genes in breast cancer. Front Immunol. 2022; 13: 1054305. [Crossref]  [PubMed]
  39. Barartabar Z, Moini N, Abbasalipourkabir R, Mesbah-Namin S.A, Ziamajidi N. Assessment of Tissue Oxidative Stress, Antioxidant Parameters, and Zinc and Copper Levels in Patients with Breast Cancer. Biol Trace Element Res. 2023; 21(7): 3233-3244. [Crossref]  [PubMed]
  40. Feng Y, Zeng J.W, Ma Q, Zhang S, Tang J, Feng J.F. Se- rum copper and zinc levels in breast cancer: A meta-analy- sis. J. Trace Elements Med. Biol. 2020, 62, 126629. [Crossref]  [PubMed]
  41. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022; 375(6586): 1254-1261. [Crossref]  [PubMed]
  42. Song S, Zhang M, Xie P, Wang S, Wang Y. Comprehensive analysis of cuproptosis-related genes and tumor microenvi- ronment infiltration characterization in breast cancer. Front Immunol. 2022; 13: 978909. [Crossref]  [PubMed]
  43. Sha S, Si L, Wu X, Chen Y, Xiong H, Xu Y, et al. Prog- nostic analysis of cuproptosis-related genes in triple-nega- tive breast cancer. Front Immunol. 2022, 13, 922780. [Crossref]  [PubMed]
  44. Chan N, Willis A, Kornhauser N, Ward M.M, Lee S.B, Na- ckos E, et al. Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolyb- date in Patients with Breast Cancer at High Risk for Recur- rence and in Preclinical Models of Lung Metastases. Clin Cancer Res. 2017;23(3):666-676. [Crossref]  [PubMed]
  45. Naghii M.R, Samman S. The role of boron in nutrition and metabolism. Prog Food Nutr Sci. 1993; 17(4): 331-349. [PubMed]
  46. Tan C.R.C, Abdul-Majeed S, Cael B, Barta S.K. Clinical Pharmacokinetics and Pharmacodynamics of Bortezomib. Clin. Pharmacokinet. 2019; 58(2): 157-168. [Crossref]  [PubMed]
  47. Mohammed E.E, Türkel N, Yigit U.M, Dalan A.B, Sahin F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol Trace Element Res. 2023; 201(12): 5692-5707. [Crossref]  [PubMed]
  48. Utomo R.Y, Wulandari F, Novitasari D, Susidarti R.A, Kiri- hata M, Hermawan A, et al. Synthesis and cytotoxicity of the boron carrier pentagamaboronon-0-ol for boron neutron capture therapy against breast cancer. J Adv Pharm Technol Res. 2022; 13(1): 70-76. [Crossref]  [PubMed]
  49. Zeng L, Han Y, Chen Z, Jiang K, Golberg D, Weng Q. Biodegradable and Peroxidase-Mimetic Boron Oxyni- tride Nanozyme for Breast Cancer Therapy Adv Sci. 2021; 8(16): e2101184. [Crossref]  [PubMed]
  50. Sahin F, Pirouzpanah M.B, Bijanpour H, Mohammadzadeh M, Eghdam Zamiri R, Ghasemi Jangjoo A, et al. The Preven- tive Effects of Boron-Based Gel on Radiation Dermatitis in Patients Being Treated for Breast Cancer: A Phase III Ran- domized, Double-Blind, Placebo-Controlled Clinical Trial. Oncol Res Treat. 2022; 45(4): 197-204. [Crossref]  [PubMed]
  51. Davis C.D, Tsuji P.A, Milner J.A. Selenoproteins and cancer prevention. Annu Rev Nutr. 2012; 32: 73-95. [Crossref]  [PubMed]
  52. Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C Vitamin E Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000; 7 Se- lenium.(accessed on 25 February 2024). [Link]
  53. Zhu X, Pan D, Wang N, Wang S, Sun G. Relationship Be- tween Selenium in Human Tissues and Breast Cancer: A Metaanalysis Based on Case-Control Studies. Biol Trace El- ement Res. 2021; 199(12): 4439-4446. [Crossref]  [PubMed]
  54. Szwiec M, Marciniak W, Derkacz R, Huzarski T, Gronwald J, Cybulski C, et al. Serum Selenium Level Predicts 10-Year Survival after Breast Cancer. Nutrients. 2021; 13(3): 953. [Crossref]  [PubMed]
  55. Sandsveden M, Nilsson E, Borgquist S, Rosendahl A.H, Manjer J. Prediagnostic serum selenium levels in relation to breast cancer survival and tumor characteristics. Int J Cancer. 2020; 147(9): 2424-2436. [Crossref]  [PubMed]
  56. Guo D, Hendryx M, Liang X, Manson J.E, He, K, Vito- lins M.Z, et al. Association between selenium intake and breast cancer risk: Results from the Women's Health Initia- tive. Breast Cancer Res Treat. 2020; 183(1): 217-226. [Crossref]  [PubMed]
  57. Berger M.M, Shenkin A, Schweinlin A, Amrein K, Augs- burger M, Biesalski HK, et al. ESPEN micronutrient guide- line. Clin Nutr. 2022; 41(6): 1357-1424. [Link]
  58. Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormal- ities. J Cell Physiol. 2019; 234(12): 21613-21629. [Crossref]  [PubMed]
  59. Iron. Fact Sheet for Health Professionals [Internet].(accessed on 25 April 2024). [Link]
  60. Islam S, Hoque N, Nasrin N, Hossain M, Rizwan F, Biswas K, et al. Iron Overload and Breast Cancer: Iron Chelation as a Potential Therapeutic Approach. Life (Basel). 2022;12(7): 963. [Crossref]  [PubMed]
  61. Huang X. Does iron have a role in breast cancer? Lancet Oncol. 2008;9(8):803-807. [Crossref]  [PubMed]
  62. Sanagoo A, Kiani F, Saei Gharenaz M, Sayehmiri F, Koohi F, Jouybari L, et al. A systematic review and meta-analysis on the association of serum and tumor tissue iron and risk of breast. Casp J Intern Med. 2020;11(1):1-11. [Link]
  63. Huang Y, Cao D, Chen Z, Chen B, Li J, Guo J, et al. Red and processed meat consumption and cancer out- comes: Umbrella review. Food Chem. 2021; 356: 129697. [Crossref]  [PubMed]
  64. Hara T, Yoshigai E, Ohashi T, Fukada T. Zinc in Cardio- vascular Functions and Diseases: Epidemiology and Mo- lecular Mechanisms for Therapeutic Development. Int J Mol Sci. 2023; 24(8): 7152. [Crossref]  [PubMed]
  65. Li J, Cao D, Huang Y, Chen B, Chen Z, Wang R, et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022; 9: 798078. [Crossref]  [PubMed]
  66. Renteria M, Belkin O, Aickareth J, Jang D, Hawwar M, Zhang J. Zinc's Association with the CmPn/CmP Signal- ing Network in Breast Cancer Tumorigenesis. Biomole- cules. 2022; 12(11): 1672. [Crossref]  [PubMed]
  67. Qu Z, Liu Q, Kong X, Wang X, Wang Z, Wang J, et al. A Sys- tematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients. 2023; 15(7): 1703. [Crossref]  [PubMed]
  68. Javadian M, Gharibi T, Shekari N, Abdollahpour-Alitappeh M, Mohammadi A, Hossieni A, et al. The role of microR- NAs regulating the expression of matrix metalloproteinas- es (MMPs) in breast cancer development, progression, and metastasis. J Cell Physiol. 2019; 234(5): 5399-5412. [Crossref]  [PubMed]
  69. Holanda AO, Oliveira AR, Cruz KJ, Severo JS, Morais JB, Silva BB, et al. Zinc and metalloproteinases 2 and 9: What is their relation with breast cancer? Rev Assoc Med Bras. 2017;63(1):78-84. [Crossref]  [PubMed]
  70. Bobrowska-Korczak B, Gątarek P, Skrajnowska D, Bielec- ki W, Wyrebiak R, Kovalczuk T, et al. Effect of Zinc Sup- plementation on the Serum Metabolites Profile at the Early Stage of Breast Cancer in Rats. Nutrients. 2020;12(11):3457. [Crossref]  [PubMed]
  71. Plantz MA, Bittar K. Dietary Calcium and Supplementation. 2024 Jul 19. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.(accessed on 25 February 2024). [PubMed]
  72. Chamlali M, Rodat-Despoix L, Ouadid-Ahidouch H. Store-Independent Calcium Entry and Related Signaling Pathways in Breast Cancer. Genes. 2021;12(7):994. [Crossref]  [PubMed]
  73. Bong AHL, Hua T, So CL, Peters AA, Robitaille M, Tan Y, et al. AKT Regulation of ORAI1-Mediated Calcium Influx in Breast Cancer Cells. Cancers 2022; 14(19): 4794. [Crossref]  [PubMed]
  74. Southern AP, Anastasopoulou C, Jwayyed S. Iodine Toxicity. 2024 May 2. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. [PubMed]
  75. Kargar S, Shiryazdi SM, Atashi SR, Neamatzadeh H, Ka- mali M. Urinary Iodine Concentrations in Cancer Pa- tients. Asian Pac J Cancer Prev. 2017;18(3):819-821. [Link]
  76. Cuenca-Micó O, Delgado-González E, Anguiano B, Va- ca-Paniagua F, Medina-Rivera A, Rodríguez-Dorantes M, et al. Effects of Molecular Iodine/Chemotherapy in the Im- mune Component of Breast Cancer Tumoral Microenviron- ment. Biomolecules. 2021;11(10):1501. [Crossref]  [PubMed]
  77. Heeling E, van de Kamer JB, Methorst M, Bruining A, van de Meent M, Vrancken Peeters MTFD, et al. The Safe Use of 125I-Seeds as a Localization Technique in Breast Can- cer during Pregnancy. Cancers (Basel). 2023;15(12):3229. [Crossref]  [PubMed]
  78. Liu, K.Y.; Feng, X.L.; Mo, X.F.; Lin, F.Y.; Zhang, X.; Huang, C.Y.; Abulimiti, A.; Li, L.; Zhang, C.X. Iron intake with the risk of breast cancer among Chinese women: A case-con- trol study. Public Health Nutr. 2021, 24, 5743-5755. [Crossref]  [PubMed]
  79. Malya FU, Kadioglu H, Hasbahceci M, Dolay K, Guzel M, Ersoy YE. The correlation between breast cancer and urinary iodine excretion levels. J Int Med Res. 2018; 46(2): 687-692. [Crossref]  [PubMed]
  80. Li H, Wang M, Zhu Z, Lu Y. Application value of the treat- ment of breast cancer bone metastases with radioactive seed 125I implantation under CT-guidance. BMC Med Imaging. 2022; 22(1): 3. [Crossref]  [PubMed]
  81. Jablonska E, Socha K, Reszka E, Wieczorek E, Skokow- ski J, Kalinowski L, et al. Cadmium, arsenic, selenium and iron- Implications for tumor progression in breast cancer. Environ Toxicol Pharmacol. 2017; 53: 151-157. [Crossref]  [PubMed]