Cancer Cell Migration Targeted Therapies

tibbibiyolojiozel-2-2-24kapak

Burcu ULAŞ KAHYAa,b, Atiye Seda YAR SAĞLAMa
aGazi University Faculty of Medicine, Department of Medical Biology, Ankara, Türkiye
bGazi University Faculty of Medicine, Department of Medical Oncology, Ankara, Türkiye

Ulaş Kahya B, Yar Sağlam AS. Cancer cell migration targeted therapies. In: Yar Sağlam AS, ed. Innovative Approaches in Cancer Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.18-24.

Makale Dili: EN

ABSTRACT
Metastasis is one of the leading causes of cancer-related mortality and inhibition of cancer cell migration is a valuable therapeutic target. Several processes, including mesenchymal-ameboid transition and amoeboid-mesenchymal transition, cell signaling, and extracellular matrix (ECM) play an essential role in migration steps. Integrins involved in ECM-cell interaction are potential targets because they activate signaling pathways. Matrix metalloproteinases (MMPs) responsible for ECM degradation, furin, a proprotein convertase, and focal adhesion kinase (FAK) have become therapeutic targets by contributing to migration. Rho-associated protein kinases (ROCKs), Rac1, P21-associated kinases (PAKs), and myotonic dystrophy kinase-associated Cdc42-binding kinases (MRCKs) are essential for providing bubble-like protrusion and cytoskeletal dynamics in cell migration and their inhibition has therapeutic potential. Microtubules, microtubule-associated proteins, and faskin, an actin-binding protein, are targets involved in cell migration. A multidimensional approach combining established therapies with emerging agents holds promise for improving cancer outcomes by preventing metastasis.

Keywords: Cell movement; neoplasm metastasis; antineoplastic protocols

Referanslar

  1. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal transduction and targeted therapy. 2020;5(1):28. [Crossref]  [PubMed]  [PMC]
  2. Krakhmal NV, Zavyalova M, Denisov E, Vtorushin S, Perelmuter V. Cancer invasion: patterns and mechanisms. Acta Naturae (англоязычная версия). 2015;7(2 (25)):17-28. [Crossref]  [PubMed]  [PMC]
  3. Wu J-s, Jiang J, Chen B-j, Wang K, Tang Y-l, Liang X-h. Plasticity of cancer cell invasion: Patterns and mechanisms. Translational oncology. 2021;14(1):100899. [Crossref]  [PubMed]  [PMC]
  4. Gandalovičová A, Rosel D, Fernandes M, Veselý P, Heneberg P, Čermák V, et al. Migrastatics-anti-metastatic and anti-invasion drugs: promises and challenges. Trends in cancer. 2017;3(6):391-406. [Crossref]  [PubMed]  [PMC]
  5. Raudenská M, Petrláková K, Juriňáková T, Fialová JL, Fojtů M, Jakubek M, et al. Engine shutdown: migrastatic strategies and prevention of metastases. Trends in Cancer. 2023. [Crossref]  [PubMed]
  6. Bergonzini C, Kroese K, Zweemer AJ, Danen EH. Targeting integrins for cancer therapy-disappointments and opportunities. Frontiers in Cell and Developmental Biology. 2022;10:863850. [Crossref]  [PubMed]  [PMC]
  7. Flies CM, Friedrich M, Lohmann P, van Garderen KA, Smits M, Tonn J-C, et al. Treatment-associated imaging changes in newly diagnosed MGMT promoter-methylated glioblastoma undergoing chemoradiation with or without cilengitide. Neuro-oncology. 2024:noad247. [Crossref]  [PubMed]  [PMC]
  8. Jeong J, Kim J. Combination Effect of cilengitide with erlotinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. International Journal of Molecular Sciences. 2022;23(7):3423. [Crossref]  [PubMed]  [PMC]
  9. Pan X, Yi M, Liu C, Jin Y, Liu B, Hu G, et al. Cilengitide, an αvβ3-integrin inhibitor, enhances the efficacy of anti-programmed cell death-1 therapy in a murine melanoma model. Bioengineered. 2022;13(2):4557-72. [Crossref]  [PubMed]  [PMC]
  10. Evans T, Ramanathan R, Yazji S, Glynne-Jones R, Anthoney A, Berlin J, et al. Final results from cohort 1 of a phase II study of volociximab, an anti-α5β1 integrin antibody, in combination with gemcitabine (GEM) in patients (pts) with metastatic pancreatic cancer (MPC). Journal of Clinical Oncology. 2007;25(18_suppl):4549-. [Crossref]
  11. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Molecular cancer therapeutics. 2018;17(6):1147-55. [Crossref]  [PubMed]  [PMC]
  12. Almutairi S, Kalloush HMd, Manoon NA, Bardaweel SK. Matrix metalloproteinases inhibitors in cancer treatment: an updated review (2013-2023). Molecules. 2023;28(14):5567. [Crossref]  [PubMed]  [PMC]
  13. Bramhall S, Hallissey M, Whiting J, Scholefield J, Tierney G, Stuart R, et al. Marimastat as maintenance therapy for patients with advanced gastric cancer: a randomised trial. British journal of cancer. 2002;86(12):1864-70. [Crossref]  [PubMed]  [PMC]
  14. Yuan H, Lu W, Wang L, Shan L, Li H, Huang J, et al. Synthesis of derivatives of methyl rosmarinate and their inhibitory activities against matrix metalloproteinase-1 (MMP-1). European Journal of Medicinal Chemistry. 2013;62:148-57. [Crossref]  [PubMed]
  15. Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. European journal of medicinal chemistry. 2020;194:112260. [Crossref]  [PubMed]
  16. Shah MA, Bodoky G, Starodub A, Cunningham D, Yip D, Wainberg ZA, et al. Phase III study to evaluate efficacy and safety of andecaliximab with mFOLFOX6 as first-line treatment in patients with advanced gastric or GEJ adenocarcinoma (GAMMA-1). Journal of Clinical Oncology. 2021;39(9):990. [Crossref]  [PubMed]  [PMC]
  17. Shah MA, Metges J-P, Cunningham D, Shiu K-K, Wyrwicz L, Thai D, et al. A phase II, open-label, randomized study to evaluate the efficacy and safety of andecaliximab combined with nivolumab versus nivolumab alone in subjects with unresectable or recurrent gastric or gastroesophageal junction adenocarcinoma. American Society of Clinical Oncology; 2019. [Crossref]
  18. Allen JL, Hames RA, Mastroianni NM, Greenstein AE, Weed SA. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor andecaliximab as an anti-invasive therapeutic in head and neck squamous cell carcinoma. Oral Oncology. 2022;132:106008. [Crossref]  [PubMed]
  19. Bendell J, Sharma S, Patel MR, Windsor KS, Wainberg ZA, Gordon M, et al. Safety and Efficacy of Andecaliximab (GS‐5745) Plus Gemcitabine and Nab‐Paclitaxel in Patients with Advanced Pancreatic Adenocarcinoma: Results from a Phase I Study. The Oncologist. 2020;25(11):954-62. [Crossref]  [PubMed]  [PMC]
  20. Lyu Y, Xiao Q, Yin L, Yang L, He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal transduction and targeted therapy. 2019;4(1):26. [Crossref]  [PubMed]  [PMC]
  21. Lee S, Jnag B, Hwang J, Lee Y, Cho S, Yang H, et al. Everolimus exerts anticancer effects through inhibiting the interaction of matrix metalloproteinase-7 with syndecan-2 in colon cancer cells. American Journal of Physiology-Cell Physiology. 2024. [Crossref]  [PubMed]
  22. Shewarega A, Santana JG, Nam D, Berz A, Tefera J, Kahl V, et al. Effect of Incomplete Cryoablation and Matrix Metalloproteinase Inhibition on Intratumoral CD8+ T-Cell Infiltration in Murine Hepatocellular Carcinoma. Radiology. 2024;310(2):e232365. [Crossref]  [PubMed]
  23. Al‐kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Saad HM, et al. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Reports. 2024;7(1):e1920. [Crossref]  [PubMed]  [PMC]
  24. Ma Y-C, Fan W-J, Rao S-M, Gao L, Bei Z-Y, Xu S-T. Effect of Furin inhibitor on lung adenocarcinoma cell growth and metastasis. Cancer Cell International. 2014;14:1-6. [Crossref]  [PubMed]  [PMC]
  25. Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Frontiers in Cell and Developmental Biology. 2022;10:1040311. [Crossref]  [PubMed]  [PMC]
  26. Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The development of FAK inhibitors: A five-year update. International Journal of Molecular Sciences. 2022;23(12):6381. [Crossref]  [PubMed]  [PMC]
  27. Moore K, Walter A. Defactinib hydrochloride. Dual FAK1/PYK2 inhibitor, Treatment of non-small cell lung cancer, treatment of malignant mesothelioma, treatment of ovarian cancer. Drugs of the Future. 2014;39(11). [Crossref]
  28. [National Library of Medicine Access Date: 20/02/2024]. Available from: [Link]
  29. Banerjee SN, Ring KL, Van Nieuwenhuysen E, Fabbro M, Aghajanian C, Oaknin A, et al. Initial efficacy and safety results from ENGOT-ov60/GOG-3052/RAMP 201: a phase 2 study of avutometinib (VS-6766)±defactinib in recurrent low-grade serous ovarian cancer (LGSOC). J Clin Oncol. 2023;41(Suppl. 16):5515. [Crossref]
  30. Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, et al. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Medicinal Chemistry. 2023(0). [Crossref]  [PubMed]
  31. Wu L, Wang J, Wang L, Lu W, Wang K, Lin A, et al. 753P IN10018 in combination with pegylated liposomal doxorubicin (PLD) in platinum-resistant ovarian cancer (PROC): A single-arm, phase Ib clinical trial. Annals of Oncology. 2023;34:S516. [Crossref]
  32. [Available from: [Link]
  33. Xing P, Zhao Q, Zhang L, Wang H, Huang D, Hu P, et al. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, first-in-human phase 1 study. BMC medicine. 2022;20(1):1-15. [Crossref]  [PubMed]  [PMC]
  34. Zhao H, Chen J, Song Z, Zhao Y, Guo Y, Wu G, et al. First-in-human phase I results of APG-2449, a novel FAK and third-generation ALK/ROS1 tyrosine kinase inhibitor (TKI), in patients (pts) with second-generation TKI-resistant ALK/ROS1+ non-small cell lung cancer (NSCLC) or mesothelioma. American Society of Clinical Oncology; 2022. [Crossref]
  35. Chugh S, Tien JC, Hon J, Kenum C, Mannan R, Cheng Y, et al. Therapeutic benefit of the dual ALK/FAK inhibitor ESK440 in ALK-driven neuroblastoma. Neoplasia. 2024:100964. [Crossref]
  36. Liu Q-q, Zeng X-l, Guan Y-l, Lu J-x, Tu K, Liu F-y. Verticillin A inhibits colon cancer cell migration and invasion by targeting c-Met. Journal of Zhejiang University Science B. 2020;21(10):779. [Crossref]  [PubMed]  [PMC]
  37. McLeod R, Kumar R, Papadatos-Pastos D, Mateo J, Brown JS, Garces AHI, et al. First-in-human study of AT13148, a dual ROCK-AKT inhibitor in patients with solid tumors. Clinical Cancer Research. 2020;26(18):4777-84. [Crossref]  [PubMed]  [PMC]
  38. Martino J, Siri SO, Calzetta NL, Paviolo NS, Garro C, Pansa MF, et al. Inhibitors of Rho kinases (ROCK) induce multiple mitotic defects and synthetic lethality in BRCA2-deficient cells. Elife. 2023;12:e80254. [Crossref]  [PubMed]  [PMC]
  39. Briefs B. CDC42BPA/MRCKα: a kinase target for brain, ovarian and skin cancers. Cancer Res. 2018;78:2096-114.
  40. Kale VP, Hengst JA, Sharma AK, Golla U, Dovat S, Amin SG, et al. Characterization of Anticancer Effects of the Analogs of DJ4, a Novel Selective Inhibitor of ROCK and MRCK Kinases. Pharmaceuticals. 2023;16(8):1060. [Crossref]  [PubMed]  [PMC]
  41. Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and a Potential Target for Cancer Therapy. Molecules. 2023;28(7):2976. [Crossref]  [PubMed]  [PMC]
  42. Cruz-Collazo A, Ruiz-Calderon JF, Picon H, Borrero-Garcia LD, Lopez I, Castillo-Pichardo L, et al. Efficacy of rac and Cdc42 inhibitor MBQ-167 in triple-negative breast cancer. Molecular cancer therapeutics. 2021;20(12):2420-32. [Crossref]  [PubMed]  [PMC]
  43. Humphries-Bickley T, Castillo-Pichardo L, Hernandez-O'Farrill E, Borrero-Garcia LD, Forestier-Roman I, Gerena Y, et al. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Molecular cancer therapeutics. 2017;16(5):805-18. [Crossref]  [PubMed]  [PMC]
  44. Borrero-García LD, del Mar Maldonado M, Medina-Velázquez J, Troche-Torres AL, Velazquez L, Grafals-Ruiz N, et al. Rac inhibition as a novel therapeutic strategy for EGFR/HER2 targeted therapy resistant breast cancer. BMC cancer. 2021;21(1):1-13. [Crossref]  [PubMed]  [PMC]
  45. Clayton NS, Ridley AJ. Targeting Rho GTPase signaling networks in cancer. Frontiers in cell and developmental biology. 2020;8:222. [Crossref]  [PubMed]  [PMC]
  46. Lyu L, Li H, Lu K, Jiang S, Li H. PAK inhibitor FRAX486 decreases the metastatic potential of triple-negative breast cancer cells by blocking autophagy. British Journal of Cancer. 2023:1-12. [Crossref]  [PubMed]  [PMC]
  47. Dukel M, Fiskin K. Combination of PAKs inhibitors IPA-3 and PF-3758309 effectively suppresses colon carcinoma cell growth by perturbing DNA damage response. International Journal of Radiation Biology. 2023;99(2):340-54. [Crossref]  [PubMed]
  48. Garcin C, Straube A. Microtubules in cell migration. Essays in biochemistry. 2019;63(5):509-20. [Crossref]  [PubMed]  [PMC]
  49. Čermák V, Dostál V, Jelínek M, Libusová L, Kovář J, Rösel D, et al. Microtubule-targeting agents and their impact on cancer treatment. European journal of cell biology. 2020;99(4):151075. [Crossref]  [PubMed]
  50. Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorganic Chemistry. 2021;116:105320. [Crossref]  [PubMed]
  51. Wattanathamsan O, Pongrakhananon V. Emerging role of microtubule-associated proteins on cancer metastasis. Frontiers in Pharmacology. 2022;13:935493. [Crossref]  [PubMed]  [PMC]
  52. Tagay Y, Kheirabadi S, Ataie Z, Singh R, Prince O, Nguyen A, et al. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. bioRxiv. 2023:2023.04. 04.535605. [Crossref]
  53. Murase Y, Ono H, Ogawa K, Yoshioka R, Ishikawa Y, Ueda H, et al. Inhibitor library screening identifies ispinesib as a new potential chemotherapeutic agent for pancreatic cancers. Cancer Science. 2021;112(11):4641-54. [Crossref]  [PubMed]  [PMC]
  54. Höing S, Yeh T-Y, Baumann M, Martinez NE, Habenberger P, Kremer L, et al. Dynarrestin, a novel inhibitor of cytoplasmic dynein. Cell chemical biology. 2018;25(4):357-69. e6. [Crossref]  [PubMed]  [PMC]
  55. Li G, Tian Y, Zhu W-G. The roles of histone deacetylases and their inhibitors in cancer therapy. Frontiers in Cell and Developmental Biology. 2020;8:576946. [Crossref]  [PubMed]  [PMC]
  56. Anwar S, Shahwan M, Hasan GM, Islam A, Hassan MI. Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cellular Signalling. 2022:110434. [Crossref]  [PubMed]
  57. Lin S, Taylor MD, Singh PK, Yang S. How does fascin promote cancer metastasis? The FEBS journal. 2021;288(5):1434-46. [Crossref]  [PubMed]  [PMC]
  58. Izdebska M, Zielińska W, Krajewski A, Grzanka A. Fascin in migration and metastasis of breast cancer cells-A review. Advances in Medical Sciences. 2023;68(2):290-7. [Crossref]  [PubMed]
  59. Chen L, Yang S, Jakoncic J, Zhang JJ, Huang X-Y. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010;464(7291):1062-6. [Crossref]  [PubMed]  [PMC]
  60. Chung V, Jhaveri KL, Von Hoff DD, Huang X-Y, Garmey EG, Zhang J, et al. Phase 1A clinical trial of the first-in-class fascin inhibitor NP-G2-044 evaluating safety and anti-tumor activity in patients with advanced and metastatic solid tumors. Wolters Kluwer Health; 2021. [Crossref]