CARDIOVASCULAR PHISIOLOGY
Erbil Türksal
Ankara Atatürk Sanatoryum Training and Research Hospital, Department of Anesthesiology and Reanimation, Ankara, Türkiye
Türksal E. Cardiovascular Phisiology. In: Kazancı D, editor. Anesthesiology Fast Review. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.9-22.
ABSTRACT
- The cardiac muscle consists of atrial and ventricular contractile cells, specialized pacemaker cells, and conduction cells.
- Each cardiac cycle begins with the spontaneous generation of an action potential in the sinoatrial (SA) node. Compared to ventricular muscle action potentials, this process occurs more slowly, without a distinct spike or plateau.
- Although most anesthetic agents suppress SA node automaticity, this does not necessarily result in bradycardia. However, exaggerated responses may be observed, particularly in pathological conditions such as aging, heart failure, and arrhythmias.
- Myocardial contractile force is directly dependent on the influx of Ca2+ from the extracellular space into the cell.
- Digoxin, a cardiac glycoside, is used in the treatment of heart failure as it increases intracellular Ca2+ levels. Most local, volatile, and intravenous anesthetics suppress myocardial contractility. Anesthetic-induced cardiac depression is more pronounced in patients with hypocalcemia or those receiving calcium channel blockers and/or b-blockers.
- The heart is innervated by sympathetic nerves originating from T1-2 to T5-6 and by the parasympathetic (vagus) nerve. The right sympathetic and parasympathetic nerves primarily influence the SA node, whereas the left sympathetic and parasympathetic nerves primarily affect the atrioventricular (AV) node.
- Atrial emptying begins with the opening of the tricuspid and mitral valves, during which the majority (70-80%) of blood passively enters the ventricles.
- The cardiac cycle is divided into four phases: isovolumetric contraction and ventricular ejection occur during systole, whereas isovolumetric relaxation and ventricular filling take place during diastole.
- Ventricular performance is typically assessed based on the volume of blood pumped by the heart per minute, known as cardiac output, which is calculated as the product of stroke volume and heart rate.
- Mean arterial pressure is directly proportional to systemic vascular resistance and cardiac output.
- When baroreceptors detect a decrease in blood pressure, compensation occurs through tachycardia, increased contractility, and elevated systemic vascular resistance. All volatile and intravenous anesthetics inhibit the baroreflex response, thereby impairing this compensatory mechanism.
Keywords: Heart; Cardiovascular physiology; Heart conduction system; Myocardial contraction; Cardiac output; Blood pressure; Anesthetic agents
×
Kaynak Göster
Referanslar
- Mohrman DE, Heller LJ. Cardiovascular Physiology, Ninth Edition: McGraw-Hill Education; 2018. [Link]
- De Mello WC. The Cardiac Syncytium; An Overview. Heart Cell Coupling and Impulse Propagation in Health and Disease. Boston, MA: Springer US; 2002. p. 1-23. [Crossref]
- Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev. 2021;101(3):1083-176. [Crossref] [PubMed]
- Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185-94. [Crossref] [PubMed]
- Padala SK, Cabrera JA, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol. 2021;44(1):15-25. [Crossref] [PubMed]
- Barbuti A, Baruscotti M, Bucchi A. The "Funny" Pacemaker Current. In: Tripathi ON, Quinn TA, Ravens U, eds. Heart Rate and Rhythm: Molecular Basis, Pharmacological Modulation and Clinical Implications. 2nd ed. Cham: Springer International Publishing; 2023. p. 63-87. [Crossref]
- Anderson RH, Ho SY. The architecture of the sinusnode, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol. 1998;9(11):1233-48. [Crossref] [PubMed]
- Hall JE. Guyton and Hall Textbook of Medical Physiology. 13th ed. United Kingdom: Elsevier Health Sciences; 2015. p. 123-9. [Link]
- Kennedy A, Finlay DD, Guldenring D, Bond R, Moran K, McLaughlin J. The Cardiac Conduction System: Generation and Conduction of the Cardiac Impulse. Crit Care Nurs Clin North Am. 2016;28(3):269-79. [Crossref] [PubMed]
- Kojima A, Matsuura H. Ionic mechanisms of the action of anaesthetics on sinoatrial node automaticity. Eur J Pharmacol. 2017;814:63-72. [Crossref] [PubMed]
- Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart. Br J Pharmacol. 2012;166(7):2117-35. [Crossref] [PubMed] [PMC]
- Weiskopf RB, Moore MA, Eger EI 2nd, Noorani M, McKay L, Chortkoff B, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology. 1994;80(5):1035-45. [Crossref] [PubMed]
- Tramer MR, Moore RA, McQuay HJ. Propofol and bradycardia: causation, frequency and severity. Br J Anaesth. 1997;78(6):642-51. [Crossref] [PubMed]
- Hammer GB, Drover DR, Cao H, Jackson E, Willimas GD, Ramamoorthy C,et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106(1):79-83. [Crossref] [PubMed]
- Bowdle TA. Adverse effects of opioid agonists and agonist-antagonists in anaesthesia. Drug Saf. 1998;19(3):173-89. [Crossref] [PubMed]
- Heavner JE. Cardiac toxicity of local anesthetics in the intact isolated heart model: a review. Reg Anesth Pain Med. 2002;27(6):545-55. [Crossref] [PubMed]
- Levick JR. An Introduction to Cardiovascular Physiology: 6th ed. United Kingdom: Butterworth-Heinemann; 2013. p. 23-44. [Link]
- Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198-205. [Crossref] [PubMed]
- Butterworth JF, Mackey DC, Wasnick JD, eds. Işık B, çeviri editörü. Morgan and Mikhail Klinik Anesteziyoloji. 7. Baskı. Ankara: Güneş Tıp Kitabevleri; 2024. p. 345-81. [Link]
- Meng T, Bu W, Ren X, Chen X, Yu J, Eckenhoff RG, et al. Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J. 2016;30(8):2915-25. [Crossref] [PubMed] [PMC]
- Ren X, Schmidt W, Huang Y, Lu H, Liu W, Bu W, et al. Fropofol decreases force development in cardiac muscle. FASEB J. 2018;32(8):4203-13. [Crossref] [PubMed] [PMC]
- Butterworth JF 4th. Models and mechanisms of local anesthetic cardiac toxicity: a review. Reg Anesth Pain Med. 2010;35(2):167-76. [Crossref] [PubMed]
- Kapa S, DeSimone CV, Asirvatham SJ. Innervation of the heart: An invisible grid within a black box. Trends Cardiovasc Med. 2016;26(3):245-57. [Crossref] [PubMed] [PMC]
- Thaemert NL, Beckerly R. Cardiac physiology. In: Vacanti C, Segal S, Sikka P, Urman R, eds. Essential Clinical Anesthesia. 1st ed. United Kingdom: Cambridge University Press; 2011. p 427-37. [Link]
- Mark JB. Central venous pressure monitoring: clinical insights beyond the numbers. J Cardiothorac Vasc Anesth. 1991;5(2):163-73. [Crossref] [PubMed]
- Buckberg G, Hoffman JI, Mahajan A, Saleh S, Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation. 2008;118(24):2571-87. [Crossref] [PubMed]
- Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39 e14. [Crossref] [PubMed]
- Patel N, Durland J, Awosika AO, Makaryus AN. Physiology, Cardiac Index. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. [PubMed]
- Karlsson J, Lönnqvist PA. Capnodynamics - noninvasive cardiac output and mixed venous oxygen saturation monitoring in children. Front Pediatr. 2023;11:1111270. [Crossref] [PubMed] [PMC]
- Peters CH, Sharpe EJ, Proenza C. Cardiac Pacemaker Activity and Aging. Annu Rev Physiol. 2020;82:21-43. [Crossref] [PubMed] [PMC]
- Jose AD, Collison D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 1970;4(2):160-7. [Crossref] [PubMed]
- Norton JM. Toward consistent definitions for preload and afterload. Adv Physiol Educ. 2001;25(1-4):53-61. [Crossref] [PubMed]
- Regen DM. Calculation of left ventricular wall stress. Circ Res. 1990;67(2):245-52. [Crossref] [PubMed]
- Kam P, Power I. Principles of Physiology for the Anaesthetist. 4th ed. United Kingdom: CRC Press; 2020. p. 171-6. [Link]
- Ogawa Y, Iwasaki K, Shibata S, Kato J, Ogawa S, Oi Y. Different effects on circulatory control during volatile induction and maintenance of anesthesia and total intravenous anesthesia: autonomic nervous activity and arterial cardiacbaroreflex function evaluated by blood pressure and heart rate variability analysis. J Clin Anesth. 2006;18(2):87-95. [Crossref] [PubMed]
- Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of Coronary Blood Flow. Compr Physiol. 2017;7(2):321-82. [Crossref] [PubMed] [PMC]
- Ardehali A, Ports TA. Myocardial oxygen supply and demand. Chest. 1990;98(3):699-705. [Crossref] [PubMed]
- Landoni G, Fochi O, Tritapepe L, Guarracino F, Belloni I, Bignami E, et al. Cardiac protection by volatile anesthetics. A review. Minerva Anestesiol. 2009;75(5):269-73. [PubMed]