Central Nervous System Tumors
Assoc. Prof. Dr. Ela DELİKGÖZ SOYKUT1
Assoc. Prof. Dr. Gülhan GÜLER AVCI2
1Samsun Training and Research Hospital, Department of Radiation Oncology, Samsun, Türkiye
2Tokat Gaziosmanpaşa University School of Medicine, Department of Radiation Oncology, Tokat, Türkiye
ABSTRACT
The most common cancers of the central nervous system are brain tumors. Additionally, brain tumors are the most prevalent solid tumors that cause significant morbidity and mortality in children. Since brain tumors, especially gliomas, have a poor prognosis, early diagnosis and prevention are crucial to decreasing the over- all mortality rate from brain tumors. In recent years, the connection between nutrition and brain tumors has gained attention. This chapter aims to evaluate in detail the relationship between vitamins and minerals and brain tumors. For this reason, we tried to examine the current research in this field by focusing on whether it is a risk factor for brain tumor development, whether it has a proven protective feature against brain tumors, and whether it is included in treatment schemes.
Keywords: Central nervous system neoplasms; Micronutrients; Trace elements; Minerals; Vitamins
Referanslar
- Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of Brain Tumors. Neurol Clin. 2018;36(3):395-419. [Crossref] [PubMed]
- Basu TK. Significance of vitamins in cancer. Oncolo- gy. 1976;33(4):183-187. [Crossref] [PubMed]
- Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, et al. Antioxidants in brain tumors: current therapeutic signifi- cance and future prospects. Mol Cancer. 2022;21(1):204. [Crossref] [PubMed] [PMC]
- Osman DE, Phon BWS, Kamarudin MNA, Ponnampalam SN, Radhakrishnan AK, Bhuvanendran S. Biomarkers Regulated by Lipid-Soluble Vitamins in Glioblastoma. Nu- trients. 2022;14(14):2873. [Crossref] [PubMed] [PMC]
- Chen H, Ward MH, Tucker KL, Graubard BI, McComb RD, Potischman NA, et al. Diet and risk of adult glioma in eastern Nebraska, United States. Cancer Causes Con- trol. 2002;13(7):647-55. [Crossref] [PubMed]
- Michaud DS, Holick CN, Batchelor TT, Giovannucci E, Hunter DJ. Prospective study of meat intake and dietary ni-trates, nitrites, and nitrosamines and risk of adult glioma. Am J Clin Nutr. 2009;90(3):570-577. [Crossref] [PubMed] [PMC]
- Lv W, Zhong X, Xu L, Han W. Association between Dietary Vitamin A Intake and the Risk of Glioma: Evidence from a Meta-analysis. Nutrients. 2015;7(11):8897-8904. [Crossref] [PubMed] [PMC]
- Giles GG, McNeil JJ, Donnan G, Webley C, Staples MP, Ireland PD, et al. Dietary factors and the risk of glioma in adults: results of a case-control study in Melbourne, Austra- lia. Int J Cancer. 1994;59(3):357-362. [Crossref] [PubMed]
- Qin S, Wang M, Zhang T, Zhang S. Vitamin E intake is not associated with glioma risk: evidence from a meta-analysis. Neuroepidemiology. 2014;43(3-4):253-258. [Crossref] [PubMed]
- Dubrow R, Darefsky AS, Park Y, Mayne ST, Moore SC, Kilfoy B, et al. Dietary components related to N-nitroso compound formation: a prospective study of adult glioma. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1709-1722. [Crossref] [PubMed] [PMC]
- Brenner AV, Linet MS, Shapiro WR, Selker RG, Fine HA, Black PM, et al. Season of birth and risk of brain tumors in adults. Neurology. 2004;63(2):276-281. [Crossref] [PubMed]
- Zhang W, Jiang J, He Y, Li X, Yin S, Chen F, et al. Associa- tion between vitamins and risk of brain tumors: A systemat- ic review and dose-response meta-analysis of observational studies. Front Nutr. 2022;9:935706. [Crossref] [PubMed] [PMC]
- Onyije FM, Dolatkhah R, Olsson A, Bouaoun L, Deltour I, Erdmann F, et al. Risk factors for childhood brain tumours: A systematic review and meta-analysis of observational stud- ies from 1976 to 2022. Cancer Epidemiol. 2024;88:102510. [Crossref] [PubMed] [PMC]
- Goh YI, Bollano E, Einarson TR, Koren G. Prenatal mul- tivitamin supplementation and rates of pediatric cancers: a meta-analysis. Clin Pharmacol Ther. 2007;81(5):685-691. [Crossref] [PubMed]
- DeLorenze GN, McCoy L, Tsai AL, Quesenberry CP Jr, Rice T, Il'yasova D, et al. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma. BMC Cancer. 2010;10:215. [Crossref] [PubMed] [PMC]
- Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Com- mun. 2020;11(1):4265. [Crossref] [PubMed] [PMC]
- Liang C, Yang L, Guo S. All-trans retinoic acid inhibits mi- gration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol Lett. 2015;9(6):2833-2838. [Crossref] [PubMed] [PMC]
- Muindi JR, Frankel SR, Huselton C, DeGrazia F, Garland WA, Young CW, et al. Clinical pharmacology of oral all- trans retinoic acid in patients with acute promyelocytic leu- kemia. Cancer Res. 1992;52(8):2138-2142. [Link]
- Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study [published correction ap- pears in J Clin Oncol. 2014 Jun 10;32(17):1862-3]. J Clin Oncol. 2009;27(7):1007-1013. [Crossref] [PubMed] [PMC]
- Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med. 1999;341(16):1165-1173. [Crossref] [PubMed]
- Yu AL, Gilman AL, Ozkaynak MF, Naranjo A, Diccian- ni MB, Gan J, et al. Long-Term Follow-up of a Phase III Study of ch14.18 (Dinutuximab) + Cytokine Immunother- apy in Children with High-Risk Neuroblastoma: COG Study ANBL0032. Clin Cancer Res. 2021;27(8):2179-2189. [Crossref] [PubMed] [PMC]
- Jaeckle KA, Hess KR, Yung WK, Greenberg H, Fine H, Schiff D, et al. Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and pro- gressive malignant glioma: a North American Brain Tumor Consortium study. J Clin Oncol. 2003;21(12):2305-2311. [Crossref] [PubMed]
- Clarke JL, Iwamoto FM, Sul J, Panageas K, Lassman AB, DeAngelis LM, et al. Randomized phase II trial of chemo- radiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin On- col. 2009;27(23):3861-3867. [Crossref] [PubMed] [PMC]
- Grauer O, Pascher C, Hartmann C, Zeman F, Weller M, Proe- scholdt M, et al. Temozolomide and 13-cis retinoic acid in patients with anaplastic gliomas: a prospective single-arm monocentric phase-II study (RNOP-05) [published correc- tion appears in J Neurooncol. 2011 Dec;105(3):671]. J Neu- rooncol. 2011;104(3):801-809. [Crossref] [PubMed]
- [Link]
- [Link]
- Li J, Qu J, Shi Y, Perfetto M, Ping Z, Christian L, et al. Nico- tinic acid inhibits glioma invasion by facilitating Snail1 deg- radation. Sci Rep. 2017;7:43173. [Crossref] [PubMed] [PMC]
- Sarkar S, Yang R, Mirzaei R, Rawji K, Poon C, Mishra MK, et al. Control of brain tumor growth by reactivating myeloid cells with niacin. Sci Transl Med. 2020;12(537):eaay9924. [Crossref] [PubMed]
- Kefayat A, Ghahremani F, Motaghi H, Amouheidari A. Ul- tra-small but ultra-effective: Folic acid-targeted gold nano- clusters for enhancement of intracranial glioma tumors' ra- diation therapy efficacy. Nanomedicine. 2019;16:173-184. [Crossref] [PubMed]
- Xu X, Li J, Han S, Tao C, Fang L, Sun Y, et al. A novel doxorubicin loaded folic acid conjugated PAMAM modified with borneol, a nature dual-functional product of reduc- ing PAMAM toxicity and boosting BBB penetration. Eur J Pharm Sci. 2016;88:178-190. [Crossref] [PubMed]
- Liu Q, Zhou L, Lu R, Yang C, Wang S, Hai L, et al. Biotin and glucose co-modified multi-targeting liposomes for effi- cient delivery of chemotherapeutics for the treatment of gli- oma. Bioorg Med Chem. 2021;29:115852. [Crossref] [PubMed]
- Bartolomei M, Mazzetta C, Handkiewicz-Junak D, Bodei L, Rocca P, Grana C, et al. Combined treatment of glioblas- toma patients with locoregional pre-targeted 90Y-biotin ra- dioimmunotherapy and temozolomide. Q J Nucl Med Mol Imaging. 2004;48(3):220-228. [PubMed]
- Liu HM, Zhang Y. Folic acid-decorated astrocytes-derived exosomes enhanced the effect of temozolomide against gli- oma. Kaohsiung J Med Sci. 2024;40(5):435-444. [Crossref] [PubMed]
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fish- er B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-996. [Crossref] [PubMed]
- Allen BG, Bodeker KL, Smith MC, Monga V, Sandhu S, Hohl R, et al. First-in-Human Phase I Clinical Trial of Phar- macologic Ascorbate Combined with Radiation and Temo- zolomide for Newly Diagnosed Glioblastoma. Clin Cancer Res. 2019;25(22):6590-6597. [Crossref] [PubMed] [PMC]
- [Link]
- [Link]
- [Link]
- Lo CS, Kiang KM, Leung GK. Anti-tumor effects of vitamin D in glioblastoma: mechanism and therapeutic implications. Lab Invest. 2022;102(2):118-125. [Crossref] [PubMed]
- Naveilhan P, Neveu I, Wion D, Brachet P. 1,25-Dihydroxyvi- tamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport. 1996;7(13):2171-2175. [Crossref] [PubMed]
- Beer TM, Myrthue A. Calcitriol in cancer treatment: from the lab to the clinic. Mol Cancer Ther. 2004;3(3):373-381. [Crossref] [PubMed]
- Trouillas P, Honnorat J, Bret P, Jouvet A, Gerard JP. Redif- ferentiation therapy in brain tumors: long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neu- rooncol. 2001;51(1):57-66. [Crossref] [PubMed]
- Bak DH, Kang SH, Choi DR, Gil MN, Yu KS, Jeong JH, et al. Autophagy enhancement contributes to the synergistic ef- fect of vitamin D in temozolomide-based glioblastoma che- motherapy. Exp Ther Med. 2016;11(6):2153-2162. [Crossref] [PubMed] [PMC]
- [Link]
- de Mesquita ML, Araújo RM, Bezerra DP, Filho RB, de Pau- la JE, Silveira ER, et al. Cytotoxicity of δ-tocotrienols from Kielmeyera coriacea against cancer cell lines. Bioorg Med Chem. 2011;19(1):623-630. [Crossref] [PubMed]
- Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA. Cytotoxicity and apoptotic activities of alpha-, gamma- and delta-tocotrienol isomers on human cancer cells. BMC Com- plement Altern Med. 2014;14:469. [Crossref] [PubMed] [PMC]
- Di Bella G. The Di Bella Method (DBM). Neuro Endocri- nol Lett. 2010;31(1):1-42. [PubMed]
- Di Bella G, Leci J, Ricchi A, Toscano R. Recurrent Glio- blastoma Multiforme (grade IV - WHO 2007): a case of complete objective response - concomitant administration of Somatostatin / Octreotide, Retinoids, Vit E, Vit D3, Vit C, Melatonin, D2 R agonists (Di Bella Method. Neuro Endocri- nol Lett. 2015;36(2):127-132. [PubMed]
- Di Bella G, Borghetto V, Costanzo E. A retrospective ob- servational study on cases of anaplastic brain tumors treat- ed with the Di Bella Method: A rationale and effectiveness. Neuro Endocrinol Lett. 2021;42(7):464-483. [PubMed]
- Shamberger RJ, Frost DV. Possible protective effects of se- lenium against human cancer. Can Med Assoc J 1969;100:468. [PubMed]
- Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA 1996;24: 1957-1963. [Crossref] [PubMed]
- Sundaram N, Pahwa AK, Ard MD, Lin N, Perkins E, Bowles AP Jr. Selenium causes growth inhibition and apoptosis in hu- man brain tumour cell lines. J Neuro Oncology 2000;46:125-133. [Crossref] [PubMed]
- Zhu Z, Kimura M, Itokawa Y, Nakatsu S, Oda Y, Kikuchi H. The effect of selenium on malignant tumour cells of the brain. Biological trace element research 1995;49:1-7. [Crossref] [PubMed]
- Yakubov E, Buchfelder M, Eyüpoglu IY, Savaskan NE. Selenium action in neuro-oncology. Biol Trace Elem Res. 2014;161(3):246-254. [Crossref] [PubMed]
- Yoon SO, Kim MM, Chung AS. Inhibitory effect of sel- enite on invasion of HT1080 tumor cells. J Biol Chem 2001;276(23):20085-20092. [Crossref] [PubMed]
- Philipov P., Tzatchev K. Selenium concentrations in serum of patients with cerebral and extracerebral tumors. Zentralbl. Neurochir. 1988;49:344-347. [PubMed]
- Stojsavljevic A., Vujotic L., Rovcanin B., Borkovic-Mitic S., Gavrovic-Jankulovic M., Manojlovic D. Assessment of trace metal alterations in the blood, cerebrospinal fluid and tissue samples of patients with malignant brain tumors. Sci. Rep. 2020;10:3816. [Crossref] [PubMed] [PMC]
- Al-Rawi W., Hamad A., Muslih R., Al-Kenany N., Hamash M., Abid F., et al. Variations in some biochemical parameters in a group of patients with primary brain tumours: a review of four studies. Innovaciencia 2018;6:1-15. [Crossref]
- Philipov P., Tzatchev K. Selenium in the treatment of pa- tients with brain gliomas. A pilot study. Zentralbl. Neu- rochir. 1990;51:145-146. [PubMed]
- Pakdaman A. Symptomatic treatment of brain tumor patients with sodium selenite, oxygen, and other supportive mea- sures. Biol. Trace Elem. Res. 1998;62:1-6. [Crossref] [PubMed]
- Hervouet E., Staehlin O., Pouliquen D., Debien E., Cartron P. F., Menanteau J., et al. Antioxidants delay clinical signs and systemic effects of ENU induced brain tumors in rats. Nutr. Cancer 2013;65:686-694. [Crossref] [PubMed]
- Yakubov E. Der Einfluss Des Zerebralen Selenspiegels auf die Progression Maligner Hirntumoren. Dissertation 2019. Erlangen: Friedrich-Alexander University of Erlan- gen-Nürnberg. [Link]
- Cheng Y, Sk UH, Zhang Y, Ren X, Zhang L, Huber-Keener KJ, et al Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apop- totic and autophagic cell death. PLoS One 2012;7(4):e35104. [Crossref] [PubMed] [PMC]
- Wrobel JK, Seelbach MJ, Chen L, Power RF, Toborek M. Supplementation with selenium enriched yeast attenuates brain metastatic growth. Nutr Cancer. 2013;65(4):563-570. [Crossref] [PubMed]
- Letavayova L, Vlckova V, Brozmanova J. Selenium: from cancer prevention to DNA damage. Toxicology 2006;227(1- 2):1-14. [Crossref] [PubMed]
- Letavayova L, Vlasakova D, Spallholz JE, Brozmanova J, Chovanec M. Toxicity and mutagenicity of selenium com- pounds in Saccharomyces cerevisiae. Mutat Res 2008;638(1- 2):1-10. [Crossref] [PubMed]
- Narciso L, Parlanti E, Racaniello M, Simonelli V, Cardina- le A, Merlo D, Dogliotti E. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast 2016:1-14. [Crossref] [PubMed] [PMC]
- Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals 2001;14:315-330. [Crossref] [PubMed]
- Balaji E V, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol. 2020;887:173549. [Crossref] [PubMed]
- Haşimoğlu Z, Erbayraktar Z, Özer E, Erbayraktar S, Erkmen T. Quantitative Analysis of Serum Zinc Levels in Primary Brain Tumor Patients. Biol Trace Elem Res. 2022;200(2):568- 573. [Crossref] [PubMed]
- Dimitropoulou P, Nayee S, Liu JF, Demetriou L, van Tongeren M, Hepworth SJ, et al. Dietary zinc intake and brain cancer in adults: a case-control study. Br J Nutr. 2008;99:667-673. [Crossref] [PubMed]
- Toren A, Pismenyuk T, Yalon M, Freedman S, Simon AJ, Fisher T, et al. Zinc enhances temozolomide cytotoxici- ty in glioblastoma multiforme model systems. Oncotarget. 2016;7(46):74860-74871. [Crossref] [PubMed] [PMC]
- Andrási E, Suhajda M, Sáray I, Bezúr L, Ernyei L, Réffy A. Concentration of elements in human brain: glioblastoma multiforme. Sci Total Environ 1993;139:399-402. [Crossref] [PubMed]
- Takeda A, Tamano H, Enomoto S, Oku N. Zinc-65 Imaging of rat brain tumors. Cancer Res 2001;61:5065-5069. [PubMed]
- Nimmrich V, Eckert A. Calcium channel blockers and de- mentia. Br J Pharmacol 2013;169:1203-1210. [Crossref] [PubMed] [PMC]
- Tedeschi-Blok N, Schwartzbaum J, Lee M, Miike R, Wrensch M. Dietary calcium consumption and astrocytic glioma: the San Francisco Bay Area Adult Glioma Study, 1991-1995. Nutr Cancer. 2001;39:196-203. [Crossref] [PubMed]
- Guo X, Piao H. A Meta-Analysis of Calcium Intake and Risk of Glioma. Nutr Cancer. 2022;74(9):3194-3201. [Crossref] [PubMed]
- Brem S, Grossman SA, Carson KA, New P, Phuphanich S, Alavi JB, et al. Phase 2 trial of copper depletion and peni- cillamine as antiangiogenesis therapy of glioblastoma. Neu- ro Oncol. 2005;7:246-253. [Crossref] [PubMed] [PMC]
- Brem S, Tsanaclis AM, Zagzag D. Anticopper treat- ment inhibits pseudopodial protrusion and the invasive spread of 9L gliosarcoma cells in the rat brain. Neuro-surgery. 1990;26:391-396. [Crossref] [PubMed]
- Brem SS, Zagzag D, Tsanaclis AM, Gately S, Elkouby MP, Brien SE. Inhibition of angiogenesis and tumor growth in the brain Suppression of endothelial cell turnover by peni- cillamine and the depletion of copper, an angiogenic cofac- tor. Am J Pathol. 1990;137:1121-1142. [PubMed]
- Yoshida D, Ikeda Y, Nakazawa S. Copper chelation inhib- its tumor angiogenesis in the experimental 9L gliosarcoma model. Neurosurgery. 1995;37:287-292. [Crossref]
- Turecký L, Kalina P, Uhlikova E, Námerová Š, Križko J. Se- rum ceruloplasmin and copper levels in patients with prima- ry brain tumors. Klin Wochenschr 1984;62:187-188. [Crossref] [PubMed]
- Cilliers K, Muller CJF, Page BJ. Anat Rec (Hoboken).Trace Element Concentration Changes in Brain Tumors: A Re- view. 2020;303(5):1293-1299. [Crossref] [PubMed]
- Arslan M, Demir H, Arslan H, Gokalp AS, Demir C. Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pac. J. Can- cer Prev. 2011;12:447-451. [PubMed]
- Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007;6:29-38. [Crossref] [PubMed]
- Mirrahimi B, Mortazavi A, Nouri M, Ketabchi E, Amirjam- shidi A, Ashouri A, et al. Effect of magnesium on functional outcome and paraclinical parameters of patients undergoing supratentorial craniotomy for brain tumors: a randomized controlled trial. Acta Neurochir (Wien). 2015;157(6):985- 991. [Crossref] [PubMed]
- Chandra S, Parker DJ, Barth RF, Pannullo SC. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS). J Neurooncol 2016;127:33-41. [Crossref] [PubMed] [PMC]
- Bagheri A, Naghshi S, Sadeghi O, Larijani B, Esmaillza- deh A. Total, dietary, and supplemental magnesium intakes and risk of all-cause, cardiovascular, and cancer mortality: a systematic review and dose-response meta-analysis of pro- spective cohort studies. Adv Nutr. 2021;12(4):1196-1210. [Crossref] [PubMed] [PMC]
- Moretti E, Favero G, Rodella LF, Rezzani R. Melatonin's Antineoplastic Potential Against Glioblastoma. Cells. 2020;9(3):599. [Crossref] [PubMed] [PMC]
- Wang F, Zhu Y, Wanggou S, Lin D, Su J, Li X, et al. A natural compound melatonin enhances the effects of Nimotuzumab via inhibiting EGFR in glioblastoma. Can- cer Lett. 2024;592:216920. [Crossref] [PubMed]
- Panciroli C, Esteve A, Muñoz-Ferrer A, Abad J, Hernandez JM, Balaña C, et al. Prospective pilot study to explore the melatonin level in brain tumor patients undergoing radiother- apy. Sleep Breath. 2022;26(1):469-475. [Crossref] [PubMed]
- Ghareghani M, Zibara K, Reiter RJ, Rivest S. Reduced melatonin levels may facilitate glioblastoma initiation in the sub- ventricular zone. Expert Rev Mol Med. 2022;24:e24. [Crossref] [PubMed]