CHALLENGES AND FUTURE DIRECTIONSIN BIOMATERIALS AND REGENERATIVE APPLICATIONS

Semih Ayrıkçil

Nevşehir Hacı Bektaş Veli University, Faculty of Densistry, Department of Oral and Maxillofacial Surgery, Nevşehir, Türkiye

Ayrıkçil S. Challenges and Future Directions in Biomaterials and Regenerative Applications. Karasu HA, ed. Advanced Technologies in Oral and Maxillofacial Surgery. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.8597.

ABSTRACT

Regenerative engineering involves the application of biological technologies and technical approaches to facilitate the rehabilitate and restoration of diverse cells, tissues, and organs. Bone regeneration technologies encompass a range of approaches, including cellulosebased biomaterials, stem cell ther apies, growth factor treatments, plateletrich fibrin (PRF) therapy, as well as the use of artificial intel ligence and 3D printing. Artificial Intelligence (AI) can be used for tissue regeneration and repair. AI has become an essential component of the medical field. The significance of renewable biomaterials in dentistry has developed significantly in lately, largely due to heightened sustainability issues, resource shortage, waste pileup, and the growing requisition for biocompatible components. Cellulose, the most widespread organic polymer on Earth. Because of its biocompatibility, biodegradability, and favorable mechanical qualities, cellulose is wellsuited for a variety of uses, including in dentistry. The develop ment in stem cells have opened the door for incorporating biological methods into dentistry, with the aim of rebuilding damaged dental systems. Bone generated via stem cell treatments is not only ample besides of excellence, presenting solidness and widespread blood supply. Various bone regeneration techniques have been suggested to allow more successful longterm implantsupported rehabilitations. The development of new bone augmentation ways, including the use of growth factors, to enhance bone regeneration and address these challenges. Growth factors, have attracted intense focus in dental surgery due to their capability to improve tissue regeneration and accelerate wound healing processes. APRF is derived from the patient’s own venous blood before surgery, eliminating the risk of antigen reactions during graft placement and integration. APRF positively influences both soft and hard tis sues. APRF is primarily used in various surgical procedures, particularly in oral and maxillofacial surgery. Digitization has become essential in daily life, including in the healthcare fields. It provides an productive, reliable, costeffective, userfriendly, and ecofriendly approach to task and production management. The integration of digital technologies in implant dentistry.

The integration of 3D printing technology into dental surgery has significantly improved overall treat ment results and presurgical planning. This progress is especially noticable in the creation of personal ized surgical guides, scaffolds, titanium meshes, bone grafts, and dental implant components. The field of biomaterials and regenerative applications in oral surgery is evolving rapidly. As the advancements continue, we may see more effective and personalized treatments that enhance healing, reduce compli cations, and improve patient outcomes in oral surgery.

Keywords: Biocompatible materials; Cellulose; Mesenchymal stem cells; Bone regeneration;

Artificial intelligence; Bioprinting; Plateletrich fibrin

Referanslar

  1. Tang G, Tan Z, Zeng W, et al. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol. 2020;8:587658. [Crossref]  [PubMed]  [PMC]
  2. Arvidson K, Abdallah BM, Applegate LA, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011;15(4):718-746. [Crossref]  [PubMed]  [PMC]
  3. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4(160):160ed9. [Crossref]  [PubMed]
  4. Hao M, Xue L, Wen X, et al. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater. 2024;183:1-29. [Crossref]  [PubMed]
  5. Alqutaibi A Y, Alghauli M A, Aljohani M H A, & Zafar M S. Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. 2024;42:e00356. [Crossref]
  6. Chmielewski M, Pilloni A, Adamska P. Application of Advanced Platelet-Rich Fibrin in Oral and Maxillo-Facial Surgery: A Systematic Review. J Funct Biomater. 2024;15(12):377. [Crossref]  [PubMed]  [PMC]
  7. Mueller TL, Wirth AJ, van Lenthe GH, et al. Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis. J Tissue Eng Regen Med. 2011;5(5):415-420. [Crossref]  [PubMed]
  8. Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020;2(12):e667-e676. [Crossref]  [PubMed]
  9. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36. [Crossref]  [PubMed]  [PMC]
  10. Vollmer S, Mateen BA, Bohner G, et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness [published correction appears in BMJ. 2020 Apr 1;369:m1312. [Crossref]  [PubMed]  [PMC]
  11. Kerner J, Dogan A, von Recum H. Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomater. 2021;130:54-65. [Crossref]  [PubMed]
  12. Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: Ongoing research and clinical trials. *Nanoscale Advances, 2020;2(12):5046-089. [Crossref]  [PubMed]  [PMC]
  13. Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull (Beijing). 2019;64(22):1707-1727. [Crossref]  [PubMed]
  14. Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021;50(15);8669-8742. [Crossref]  [PubMed]
  15. Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Progress in material design for biomedical applications. Proceedings of the National Academy of Sciences. 2015;112(47):14444-51. [Crossref]  [PubMed]  [PMC]
  16. Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: The importance of molecular organisation, handedness and configuration in synthetic biomaterial design. 2022;51(1):28-42. [Crossref]  [PubMed]
  17. Stein PS, Sullivan J, Haubenreich JE, Osborne PB. Composite resin in medicine and dentistry. Journal of Long-Term Effects of Medical Implants, 2005;15(6):641-654. [Crossref]  [PubMed]
  18. Sieminski AL, Gooch KJ. Biomaterial-microvasculature interactions. 2000;21(22):2233-2241. [Crossref]  [PubMed]
  19. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63(4-5):300-311. [Crossref]  [PubMed]
  20. Sun X, Kang Y, Bao J, Zhang Y, Yang Y, Zhou X. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials. 2013;34(21):4971-4981. [Crossref]  [PubMed]  [PMC]
  21. Ventre M, Netti PA. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning. ACS Appl Mater Interfaces. 2016;8(24):14896-14908. [Crossref]  [PubMed]
  22. Ventre M, Causa F, Netti PA. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J R Soc Interface. 2012;9(74):2017-2032. [Crossref]  [PubMed]  [PMC]
  23. Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses. Adv Healthc Mater. 2016;5(8):956-965. [Crossref]  [PubMed]
  24. Wu CT, Chang HT, Wu CY, Chen SW, Huang SY, Huang M, Pan, et al. Machine learning recommends affordable new Ti alloy with bone-like modulus.2020;34:41-50. [Crossref]
  25. Wang AYT, Murdock RJ, Kauwe SK, Oliynyk AO, Gurlo A, Brgoch J, et al. Machine learning for materials scientists: An introductory guide toward best practices. Chemistry of Materials, 2020;32(12):4954-4965. [Crossref]
  26. Fan J, Xu J, Wen X, Sun L, Xiu Y, Zhang Z, et al. The future of bone regeneration: Artificial intelligence in biomaterials discovery. Materials Today Communications, 2024;40: 109982. [Crossref]
  27. Chojnacka K, Moustakas K, Mikulewicz M. Multifunctional cellulose-based biomaterials for dental applications: A sustainable approach to oral health and regeneration. Industrial Crops and Products. 2023:203:117142. [Crossref]
  28. Sabir M, Ali A, Siddiqui U, Muhammad N, Khan AS, Sharif F, et al. Hydroxyapatite based dental restorative composites. Journal of Biomaterials Science, Polymer Edition. 2020;31(14):1806-1819. [Crossref]  [PubMed]
  29. Sosiati H, Rizky AM, Latief ALM, Adi RK, Hamdan S. The mechanical and physical properties of microcrystalline cellulose (MCC)/sisal/PMMA hybrid composites for dental applications. Materials Research Express. 2023;10(3):035301. [Crossref]
  30. Hasan N, Rahman L, Kim S H, et all. Recent advances of nanocellulose in drug delivery systems. Journal of Pharmaceutical Investigation, 2020;50:553-572. [Crossref]
  31. Yang Z, Liu W, Liu H, Li R, Chang L, Kan S, et al. The applications of polysaccharides in dentistry. Frontiers in Bioengineering and Biotechnology. 2022;10,970041. [Crossref]  [PubMed]  [PMC]
  32. Han Z, Zhu H, Cheng JH. Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Res Int. 2022;156:111300. [Crossref]  [PubMed]
  33. Zheng L, Li S, Luo J, Wang X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front Bioeng Biotechnol. 2020;8:593768. [Crossref]  [PubMed]  [PMC]
  34. Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2022;20:137-163. [Crossref]  [PubMed]  [PMC]
  35. Khan S, Siddique R, Huanfei D, et al. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol. 2021;9:616555. [Crossref]  [PubMed]  [PMC]
  36. Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue Engineering. Front Bioeng Biotechnol. 2019;7:45. [Crossref]  [PubMed]  [PMC]
  37. Aziz T, Farid A, Haq F, et al. A Review on the Modification of Cellulose and Its Applications. Polymers (Basel). 2022;14(15):3206. [Crossref]  [PubMed]  [PMC]
  38. Masek A, Kosmalska A. Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol. 2022;10:912052. [Crossref]  [PubMed]  [PMC]
  39. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001. [Crossref]  [PubMed]
  40. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol Ther (Seoul). 2019;27(1):25-33. [Crossref]  [PubMed]  [PMC]
  41. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. [Crossref]  [PubMed]  [PMC]
  42. Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy ElSayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunom. [Crossref]  [PubMed]  [PMC]
  43. Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:17014. [Crossref]  [PubMed]  [PMC]
  44. Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. [Crossref]  [PubMed]  [PMC]
  45. Shah P, Aghazadeh M, Rajasingh S, Dixon D, Jain V, Rajasingh J. Stem cells in regenerative dentistry: Current understanding and future directions. J Oral Biosci. 2024;66(2):288-299. [Crossref]  [PubMed]
  46. Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38(8):612-620. [Crossref]  [PubMed]
  47. Caplan AI. Mesenchymal Stem Cells: Time to Change the Name!. Stem Cells Transl Med. 2017;6(6):1445-1451. [Crossref]  [PubMed]  [PMC]
  48. Hung M, Sadri M, Katz M, Schwartz C, Mohajeri A. A Systematic Review of Stem Cell Applications in Maxillofacial Regeneration. Dent J (Basel). 2024;12(10):315. [Crossref]  [PubMed]  [PMC]
  49. Inchingolo F, Inchingolo AM, Latini G, et al. Guided Bone Regeneration: CGF and PRF Combined With Various Types of Scaffolds-A Systematic Review. Int J Dent. 2024;2024:4990295. [Crossref]  [PubMed]  [PMC]
  50. Aboelela SAA, Atef M, Shawky M, Fattouh H. Ridge augmentation using autologous concentrated growth factors enriched bone graft matrix versus guided bone regeneration using native collagen membrane in horizontally deficient maxilla: A randomized clinical trial. Clin Implant Dent Relat Res. 2022;24(5):569-579. [Crossref]  [PubMed]
  51. D'Ettorre G, Farronato M, Candida E, Quinzi V, Grippaudo C. A comparison between stereophotogrammetry and smartphone structured light technology for three-dimensional face scanning. Angle Orthod. 2022;92(3):358-363. [Crossref]  [PubMed]  [PMC]
  52. Malcangi G, Patano A, Palmieri G, et al. Maxillary Sinus Augmentation Using Autologous Platelet Concentrates (Platelet-Rich Plasma, Platelet-Rich Fibrin, and Concentrated Growth Factor) Combined with Bone Graft: A Systematic Review. Cells. 2023;12(13):1797. [Crossref]  [PubMed]  [PMC]
  53. Louis PJ, Sittitavornwong S. Managing Bone Grafts for the Mandible. Oral Maxillofac Surg Clin North Am. 2019;31(2):317-330. [Crossref]  [PubMed]
  54. Dragonas P, Schiavo JH, Avila-Ortiz G, Palaiologou A, Katsaros T. Plasma rich in growth factors (PRGF) in intraoral bone grafting procedures: A systematic review. J Craniomaxillofac Surg. 2019;47(3):443-453. [Crossref]  [PubMed]
  55. Inchingolo AM, Patano A, Di Pede C, et al. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J Funct Biomater. 2023;14(3):132. [Crossref]  [PubMed]  [PMC]
  56. Memè L, Strappa EM, Monterubbianesi R, Bambini F, Mummolo S. SEM and FT-MIR Analysis of Human Demineralized Dentin Matrix: An In Vitro Study. Applied Sciences. 2022; 12(3):1480. [Crossref]
  57. Dohan Ehrenfest DM, Bielecki T, Jimbo R, et al. Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF). Curr Pharm Biotechnol. 2012;13(7):1145-1152. [Crossref]  [PubMed]
  58. Inchingolo F, Tatullo M, Marrelli M, et al. Trial with Platelet-Rich Fibrin and Bio-Oss used as grafting materials in the treatment of the severe maxillar bone atrophy: clinical and radiological evaluations. Eur Rev Med Pharmacol Sci. 2010;14(12):1075-1084. [PubMed]
  59. Minetti E, Palermo A, Malcangi G, Inchingolo AD, Mancini A, Dipalma G, Inchingolo F, Patano A, Inchingolo AM. Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis. Journal of Functional Biomaterials. 2023;14(5):272. [Crossref]  [PubMed]  [PMC]
  60. Chmielewski M, Pilloni A, Adamska P. Application of Advanced Platelet-Rich Fibrin in Oral and Maxillo-Facial Surgery: A Systematic Review. J Funct Biomater. 2024;15(12):377. [Crossref]  [PubMed]  [PMC]
  61. Ghanaati S, Booms P, Orlowska A, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40(6):679-689. [Crossref]  [PubMed]
  62. Choukroun J. Advanced PRF, & i-PRF: platelet concentrates or blood concentrates. J Periodontal Med Clin Pract.2014;1:3.
  63. Upadhayaya V, Arora A, Goyal A. Bioactive Platelet Aggregates: PRP, PRGF, PRF, CGF and Sticky Bone. IOSR Journal of Dental and Medical Sciences. 2017;16(5):5-11. [Crossref]
  64. Shirbhate U, Bajaj P. Third-Generation Platelet Concentrates in Periodontal Regeneration: Gaining Ground in the Field of Regeneration. Cureus. 2022;14(8):e28072. [Crossref]
  65. Illmilda Asrianti D, Margono A, Julianto I, Wardoyo M P. Advanced Platelet Rich Fibrin (A-PRF) supplemented culture medium for human dental pulp stem cell proliferation. Journal of International Dental and Medical Research. 2019;12(2):396-400. [Link]
  66. Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clinical Oral Investigations. 2016;20(7):2353-2360. [Crossref]  [PubMed]
  67. Dohan Ehrenfest DM, Diss A, Odin G, Doglioli P, Hippolyte MP, Charrier JB. In vitro effects of Choukroun's PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):341-352. [Crossref]  [PubMed]
  68. Alghauli M, Alqutaibi AY, Wille S, Kern M. 3D-printed versus conventionally milled zirconia for dental clinical applications: Trueness, precision, accuracy, biological and esthetic aspects. J Dent. 2024;144:104925. [Crossref]  [PubMed]
  69. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2016;220(2):86. [Crossref]  [PubMed]
  70. Alghauli MA, Alqutaibi AY. 3D-printed intracoronal restorations, occlusal and laminate veneers: Clinical relevance, properties, and behavior compared to milled restorations; a systematic review and meta-analysis. J Esthet Restor Dent. 2024;36(8):1153-1170. [Crossref]
  71. Salmi M. Additive manufacturing processes in medical applications. 2021;14(1):191. [Crossref]  [PubMed]  [PMC]
  72. Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive Technology: Update on Current Materials and Applications in Dentistry. J Prosthodont. 2017;26(2):156-163. [Crossref]  [PubMed]
  73. Alqutaibi AY, Alghauli MA, Aljohani MHA, Zafar MS. Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. 2024;42,e00356. [Crossref]
  74. Rouzé l'Alzit F, Cade R, Naveau A, Babilotte J, Meglioli M, Catros S. Accuracy of commercial 3D printers for the fabrication of surgical guides in dental implantology. J Dent. 2022;117:103909. [Crossref]  [PubMed]
  75. Unsal GS, Turkyilmaz I, Lakhia S. Advantages and limitations of implant surgery with CAD/CAM surgical guides: A literature review. Journal of Clinical and Experimental Dentistry. 2020; 12(4), e409. [Crossref]  [PubMed]  [PMC]
  76. Zhang F, Gao X, Ye ZY, Xu DQ, Ding X. The clinical accuracy of the implant digital surgical guide: A meta-analysis. Am J Dent. 2020;33(6):296-304. [PubMed]
  77. Whitehouse MR, Blom AW. (2009). The use of ceramics as bone substitutes in revision hip arthroplasty. 2009;2(4):1895-1907. [Crossref]  [PMC]
  78. Xie Y, Li S, Zhang T, Wang C, Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci. 2020;12(1):37. [Crossref]  [PubMed]  [PMC]
  79. Seiler M, Kammerer P W, Peetz M, Hartmann A. Customized lattice structure in reconstruction of three-dimensional alveolar defects. International Journal of Computerized Dentistry, 2018;21(3):261-267. [PubMed]
  80. Jung GU, Jeon JY, Hwang KG, Park CJ. (2014). Preliminary evaluation of a three-dimensional, customized, and preformed titanium mesh in peri-implant alveolar bone regeneration. Journal of the Korean Association of Oral and Maxillofacial Surgeons. 2014;40(4): 181. [Crossref]  [PubMed]  [PMC]
  81. Hartmann A, Hildebrandt H, Schmohl JU, Kämmerer PW. Evaluation of Risk Parameters in Bone Regeneration Using a Customized Titanium Mesh: Results of a Clinical Study. Implant Dent. 2019;28(6):543-550. [Crossref]  [PubMed]
  82. Mangano F, Luongo F, Shibli JA, Anil S, Mangano C. Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study. Int J Dent. 2014;2014:252343. [Crossref]  [PubMed]  [PMC]
  83. Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology. Int J Oral Maxillofac Surg. 2012;41(7):858-862. [Crossref]  [PubMed]
  84. Moin DA, Hassan B, Mercelis P, Wismeijer D. Designing a novel dental root analogue implant using cone beam computed tomography and CAD/CAM technology. Clin Oral Implants Res. 2013;24 Suppl A100:25-27. [Crossref]  [PubMed]