COGNITIVE FUNCTIONS AND EVENTRELATED EEG BRAIN OSCILLATIONS IN DIFFERENT TYPES OF DEMENTIA

Ebru Yıldırım

İstanbul Medipol University, Graduate School of Health Science, Department of Neuroscience, İstanbul, Türkiye

Yıldırım E. Cognitive Functions and EventRelated EEG Brain Oscillations in Different Types of Dementia. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.2331.

ABSTRACT

Dementia is a neurocognitive disorder characterized by impairment in cognitive functions, which predominantly affects the aging population and contributes to dependency by disrupting daily life activities. As the aging population grows, the prevalence and incidence of dementia continue to rise. Consequently, the societal burden of dementia is increasing, leading to substantial socioeconomic costs and adverse effects on health policies. In this regard, researching dementia, with a focus on prevention, early diagnosis, and treatment, is critical to reducing both the costs and consequences of the disease. Rapid advancements in technological approaches and innovations in neuroscience have facilitated the development of new methods for diagnosis and treatment in dementia research. Electroencephalography (EEG) is one of the most widely used neuroimaging techniques in neuroscience research. Alzheimer’s disease dementia (ADD), Lewy body dementia (LBD), and Parkinson’s disease dementia (PDD) are among the most prevalent types of dementia. The pathophysiology of ADD, PDD, and LBD involves a series of progressive neurodegenerative processes, including abnormal protein accumulation in the brain, axonal dysfunction resulting from this accumulation, neuronal loss, and brain atrophy. Although clinical diagnostic criteria have been established for these conditions, significant overlap exists among ADD, PDD, and LBD due to their similar clinical and neuropathological features. In particular, PDD and LBD share highly similar pathophysiological and clinical characteristics, making it nearly impossible to distinguish not only between these two dementia subtypes but also from other forms of dementia, especially in the later stages of disease progression. EEG studies conducted on these dementia types primarily focus on spontaneous EEG activity, eventrelated potentials (ERPs), and eventrelated oscillations (EROs). Spontaneous EEG activity of the patients with ADD, LBD, and PDD differ from elderly individuals without cognitive impairment are characterized by abnormal spontaneous EEG activity. ERPs of the patients with ADD, LBD, and PDD differ from elderly individuals without cognitive impairment and are characterized by reduced amplitude and prolonged latencies. EROs of the patients with ADD, LBD, and PDD differ from elderly individuals without cognitive impairment and characterized by diminished eventrelated EEG responses. Moreover, EEG abnormalities are more pronounced in LBD and PDD compared to ADD.

Keywords: Dementia; EEG; Alzheimer’s disease; Parkinson’s disease; Lewy body disease

Referanslar

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA; 2013. [Crossref]
  2. World Health Organization. Dementia. 2023. Retrieved from [Link]
  3. World Health Organization. Dementia. 2021. Retrieved from [Link]
  4. Frahm-Falkenberg S, Ibsen R, Kjellberg J, Jennum P. Health, social and economic consequences of dementias: a comparative national cohort study. European journal of neurology. 2016;23(9):1400-1407. [Crossref]  [PubMed]
  5. Babiloni C, Del Percio C, Lizio R, Noce G, Cordone S, Lopez S, et al. Abnormalities of cortical neural synchronization mechanisms in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiology of aging. 2017;55:143-158. [Crossref]  [PubMed]
  6. Bhat S, Acharya UR, Dadmehr N, Adeli H. Clinical neurophysiological and automated EEG-based diagnosis of the alzheimer's disease. European neurology. 2015;74(34):202-210. [Crossref]  [PubMed]
  7. Sanford AM. Lewy body dementia. Clinics in geriatric medicine. 2018;34(4):603-615. [Crossref]  [PubMed]
  8. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology. 2014;13(6):614-629. [Crossref]  [PubMed]
  9. Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. The Lancet. 2015;386(10004):1683-1697. [Crossref]  [PubMed]
  10. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. The Journal of clinical investigation. 2005;115(6):1449-1457. [Crossref]  [PubMed]  [PMC]
  11. Aarsland D. Cognitive impairment in Parkinson's disease and dementia with Lewy bodies. Parkinsonism & related disorders. 2016; 22:S144-S148. [Crossref]  [PubMed]
  12. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society. 2007;22(12):1689-1707. [Crossref]  [PubMed]
  13. Güntekin B, Aktürk T, Arakaki X, Bonanni L, Del Percio C, Edelmayer R, et al. Are there consistent abnormalities in event-related EEG oscillations in patients with Alzheimer's disease compared to other diseases belonging to dementia?. Psychophysiology. 2022;59(5):e13934. [Crossref]  [PubMed]
  14. da Silva FL. EEG and MEG: relevance to neuroscience. Neuron. 2013;80(5):1112-1128. [Crossref]  [PubMed]
  15. Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, et al. Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study. Neurobiology of aging. 2018;65:18-40. [Crossref]  [PubMed]
  16. Andersson M, Hansson O, Minthon L, Rosén I, Londos E. Electroencephalogram variability in dementia with lewy bodies, Alzheimer's disease and controls. Dementia and geriatric cognitive disorders. 2008;26(3):284-290. [Crossref]  [PubMed]
  17. Peraza LR, Cromarty R, Kobeleva X, Firbank MJ, Killen A, Graziadio S, et al. Evidence of compensation in the brain networks of Lewy body dementia and Alzheimer's disease patients. bioRxiv. 2017;159491. [Crossref]
  18. Van der Zande JJ, Gouw AA, Van Steenoven I, Scheltens P, Stam CJ, Lemstra AW. EEG characteristics of dementia with Lewy bodies, Alzheimer's disease and mixed pathology. Frontiers in Aging Neuroscience. 2018;10:190. [Crossref]  [PubMed]  [PMC]
  19. Pascarelli MT, Del Percio C, De Pandis MF, Ferri R, Lizio R, Noce G, et al. Abnormalities of resting-state EEG in patients with prodromal and overt dementia with Lewy bodies: Relation to clinical symptoms. Clinical Neurophysiology. 2020;131(11):2716-2731. [Crossref]  [PubMed]
  20. Bonanni L, Thomas A, Tiraboschi P, Perfetti B, Varanese S, Onofrj M. EEG comparisons in early Alzheimer's disease, dementia with Lewy bodies and Parkinson's disease with dementia patients with a 2-year follow-up. Brain. 2008;131(3):690-705. [Crossref]  [PubMed]
  21. Stylianou M, Murphy N, Peraza LR, Graziadio S, Cromarty R, Killen A, et al. Quantitative electroencephalography as a marker of cognitive fluctuations in dementia with Lewy bodies and an aid to differential diagnosis. Clinical Neurophysiology. 2018;129(6):1209-1220. [Crossref]  [PubMed]  [PMC]
  22. Başar E. EEG-Brain Dynamics. Relation between EEG and evoked potentials, Elsevier, Amsterdam. 1980.
  23. Paitel ER, Samii MR, Nielson KA. A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer's disease. Behavioural brain research. 2021;396:112904. [Crossref]  [PubMed]
  24. Seer C, Lange F, Georgiev D, Jahanshahi M, Kopp B. Event-related potentials and cognition in Parkinson's dis ease: An integrative review. Neuroscience & Biobehavioral Reviews. 2016;71:691-714. [Crossref]  [PubMed]
  25. Rosenblum Y, Maidan I, Fahoum F, Giladi N, Bregman N, Shiner T, et al. Differential changes in visual and auditory event-related oscillations in dementia with Lewy bodies. Clinical Neurophysiology. 2020;131(10):2357-2366. [Crossref]  [PubMed]
  26. Kurita A, Murakami M, Takagi S, Matsushima M, Suzuki M. Visual hallucinations and altered visual information processing in Parkinson disease and dementia with Lewy bodies. Movement Disorders. 2010;25(2):167-171. [Crossref]  [PubMed]
  27. Law ZK, Todd C, Mehraram R, Schumacher J, Baker MR, LeBeau FE, et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with Lewy bodies-a systematic review. Diagnostics. 2020;10(9):616. [Crossref]  [PubMed]  [PMC]
  28. Kurita A, Nakamura M, Suzuki M, Mochio S, Inoue K. Visual and auditory event-related potential comparisons between Parkinson's disease with dementia and Alzheimer's disease. In International Congress Series, Elsevier. 2005;1278:57-60. [Crossref]
  29. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. Gamma, alpha, delta, and theta oscillations govern cognitive processes. International journal of psychophysiology. 2001;39(23):241-248. [Crossref]  [PubMed]
  30. Yener GG, Fide E, Özbek Y, Emek-Savaş DD, Aktürk T, Çakmur R, et al. The difference of mild cognitive impairment in Parkinson's disease from amnestic mild cognitive impairment: Deeper power decrement and no phase-locking in visual event-related responses. International Journal of Psychophysiology. 2019;139:48-58. [Crossref]  [PubMed]
  31. Rosenblum Y, Shiner T, Bregman N, Fahoum F, Giladi N, Maidan I, et al. Event-related oscillations differentiate between cognitive, motor and visual impairments. Journal of Neurology. 2022;269(7):3529-3540. [Crossref]  [PubMed]
  32. Yıldırım E, Aktürk T, Hanoğlu L, Yener G, Babiloni C, Güntekin B. Lower oddball event-related EEG delta and theta responses in patients with dementia due to Parkinson's and Lewy body than Alzheimer's disease. Neurobiology of Aging. 2024;137:78-93. [Crossref]  [PubMed]
  33. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews. 1999;29(2-3):169-195. [Crossref]  [PubMed]
  34. Yener GG, Güntekin B, Öniz A, Başar E. Increased frontal phase-locking of event-related theta oscillations in Alzheimer patients treated with cholinesterase inhibitors. International Journal of Psychophysiology. 2007;64(1):46-52. [Crossref]  [PubMed]
  35. Kolev V, Yordanova J, Schürmann M, Başar E. Increased frontal phase-locking of event-related alpha oscillations during task processing. International Journal of Psychophysiology. 2001;39(2-3):159-165. [Crossref]  [PubMed]
  36. Schmiedt C, Meistrowitz A, Schwendemann G, Herrmann M, Basar-Eroglu C. Theta and alpha oscillations reflect differences in memory strategy and visual discrimination performance in patients with Parkinson's disease. Neuroscience letters. 2005;388(3):138-143. [Crossref]  [PubMed]
  37. Karrasch M, Laine M, Rinne JO, Rapinoja P, Sinervä E, Krause CM. Brain oscillatory responses to an auditory-verbal working memory task in mild cognitive impairment and Alzheimer's disease. International Journal of Psychophysiology. 2006;59(2):168-178. [Crossref]  [PubMed]
  38. Caravaglios G, Muscoso EG, Di Maria G, Costanzo E. Patients with mild cognitive impairment have an abnormal upper-alpha event-related desynchronization/synchronization (ERD/ERS) during a task of temporal attention. Journal of neural transmission. 2015;122(3):441-453. [Crossref]  [PubMed]
  39. Goodman MS, Zomorrodi R, Kumar S, Barr MS, Daskalakis ZJ, Blumberger DM, et al. Changes in theta but not alpha modulation are associated with impairment in working memory in Alzheimer's disease and mild cognitive impairment. Journal of Alzheimer's Disease. 2019;68(3):10851094. [Crossref]  [PubMed]
  40. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clinical neurophysiology. 2009;120(2):239-247. [Crossref]  [PubMed]
  41. Wróbel A. Beta activity: a carrier for visual attention. Acta neurobiologiae experimentalis. 2000;60(2):247-260. [Crossref]  [PubMed]
  42. Güntekin B, Başar E. Event-related beta oscillations are affected by emotional eliciting stimuli. Neuroscience letters. 2010;483(3):173-178. [Crossref]  [PubMed]
  43. Güntekin B, Emek-Savaş DD, Kurt P, Yener GG, Başar E. Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment. NeuroImage: Clinical. 2013;3:39-46. [Crossref]  [PubMed]  [PMC]
  44. Fodor Z, Sirály E, Horváth A, Salacz P, Hidasi Z, Csibri É, et al. Decreased event-related beta synchronization during memory maintenance marks early cognitive decline in mild cognitive impairment. Journal of Alzheimer's Disease. 2018;63(2):489-502. [Crossref]  [PubMed]
  45. Tülay EE, Güntekin B, Yener G, Bayram A, Başar-Eroğlu C, Demiralp T. Evoked and induced EEG oscillations to visual targets reveal a differential pattern of change along the spectrum of cognitive decline in Alzheimer's Disease. International Journal of Psychophysiology. 2020;155:41-48. [Crossref]  [PubMed]
  46. Cespón J, Rodella C, Miniussi C, Pellicciari MC. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer's disease patients: a pilot study. Clinical Neurophysiology. 2019;130(11):2038-2052. [Crossref]  [PubMed]
  47. Possti D, Fahoum F, Sosnik R, Giladi N, Hausdorff JM, Mirelman A, et al. Changes in the EEG spectral power during dual-task walking with aging and Parkinson's disease: initial findings using Event-Related Spectral Perturbation analysis. Journal of neurology. 2021;268:161-168. [Crossref]  [PubMed]