Common Genetic Mutations in Adults with Primary Immunodeficiency Diseases
Mehmet Emin GEREKa , Fatih ÇÖLKESENa
aNecmettin Erbakan University Faculty of Medicine, Department of Internal Medicine, Division of Immunology and Allergy Diseases, Konya, Türkiye
Gerek ME, Çölkesen F. Common genetic mutations in adults with primary ımmunodeficiency diseases. Çölkesen F, ed. Primary Immunodeficiency Diseases in Adults. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.83-97.
ABSTRACT
Primary immunodeficiencies (PIDs) are disorders that impair the normal development or function of the immune system. PIDs make individuals more susceptible to infections, autoimmune diseases, and cancer. Genetic changes in various components of the immune system are the main cause of PIDs. These disorders can appear at any age. However, some PIDs are more common or severe in adults. Examples are common variable immunodeficiency (CVID), selective immunoglobulin A deficiency (SIgAD), chronic granulomatous disease (CGD), and autoimmune lymphoproliferative syndrome (ALPS). Diagnosing PIDs in adults is challenging due to the diverse clinical manifestations, possible symptom overlap with other conditions, and limited awareness among clinicians. The treatment of PIDs in adults depends on the type and severity of the disorder. It may include immunoglobulin replacement therapy, antimicrobial prophylaxis, immunomodulatory drugs, or hematopoietic stem cell transplantation. This chapter provides an overview of the common genetic variants in adults with PIDs. It also explains the molecular and immunological effects of genetic changes, related clinical symptoms, and potential complications. Moreover, it discusses the available treatment options for adult patients with PID.
Keywords: Adult; genetics; mutation; primary immunodeficiency diseases
Citation
Referanslar
- Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696-726. [Crossref] [PubMed] [PMC]
- Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182-94. [Crossref] [PubMed]
- Gathmann B, Grimbacher B, Beauté J, Dudoit Y, Mahlaoui N, Fischer A, et al. The European internet-based patient and research database for primary immunodeficiencies: results 2006-2008. Clin Exp Immunol. 2009;157 Suppl 1(Suppl 1):3-11. [Crossref] [PubMed] [PMC]
- Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol. 2010;126(3):602-10.e1-11. [Crossref] [PubMed] [PMC]
- Patel NC, Chinen J, Rosenblatt HM, Hanson IC, Krance RA, Paul ME, et al. Outcomes of patients with severe combined immunodeficiency treated with hematopoietic stem cell transplantation with and without preconditioning. The J Allergy Clin Immunol. 2009;124(5):1062-9.e1-4. [Crossref] [PubMed] [PMC]
- Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B, et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med. 2008;358(19):2030-8. [Crossref] [PubMed]
- Villa A, Sobacchi C, Notarangelo LD, Bozzi F, Abinun M, Abrahamsen TG, et al. V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood. 2001;97(1):81-8. [Crossref] [PubMed]
- Essadssi S, Benhsaien I, Bakhchane A, Charoute H, Abdelghaffar H, Bousfiha AA, et al. A Homozygous RAG1 Gene Mutation in a Case of Combined Immunodeficiency: Clinical, Molecular, and Computational Analysis. Hum Hered. 2019;84(6):272-8. [Crossref] [PubMed]
- Schuetz C, Neven B, Dvorak CC, Leroy S, Ege MJ, Pannicke U, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood. 2014;123(2):281-9. [Crossref] [PubMed] [PMC]
- Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360(5):447-58. [Crossref] [PubMed]
- Sauer AV, Brigida I, Carriglio N, Hernandez RJ, Scaramuzza S, Clavenna D, et al. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood. 2012;119(6):1428-39. [Crossref] [PubMed] [PMC]
- Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, et al. Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr. 1997;130(3):378-87. [Crossref] [PubMed]
- Booth C, Romano R, Roncarolo MG, Thrasher AJ. Gene therapy for primary immunodeficiency. Hum Mol Genet. 2019;28(R1):R15-R23. [Crossref] [PubMed]
- Venegas-Montoya E, Staines-Boone AT, Sánchez-Sánchez LM, García-Campos JA, Córdova-Gurrola RA, Salazar-Galvez Y, et al. Case Report: DOCK8 Deficiency Without Hyper-IgE in a Child With a Large Deletion. Front Pediatr. 2021;9:635322. [Crossref] [PubMed] [PMC]
- Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, Garcia JA, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med. 2014;211(13):2549-66. [Crossref] [PubMed] [PMC]
- Janssen E, Morbach H, Ullas S, Bannock JM, Massad C, Menard L, et al. Dedicator of cytokinesis 8-deficient patients have a breakdown in peripheral B-cell tolerance and defective regulatory T cells. J Allergy Clin Immunol. 2014;134(6):1365-74. [Crossref] [PubMed] [PMC]
- Haskologlu S, Kostel Bal S, Islamoglu C, Aytekin C, Guner S, Sevinc S, et al. Clinical, immunological features and follow up of 20 patients with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Allergy Immunol. 2020;31(5):515-27. [Crossref] [PubMed] [PMC]
- Ollech A, Mashiah J, Lev A, Simon AJ, Somech R, Adam E, et al. Treatment options for DOCK8 deficiency-related severe dermatitis. J Dermatol. 2021;48(9):1386-93. [Crossref] [PubMed]
- Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128(7):3071-87. [Crossref] [PubMed] [PMC]
- Kellner ES, Krupski C, Kuehn HS, Rosenzweig SD, Yoshida N, Kojima S, et al. Allogeneic hematopoietic stem cell transplant outcomes for patients with dominant negative IKZF1/IKAROS mutations. J Allergy Clin Immunol. 2019;144(1):339-42. [Crossref] [PubMed]
- Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, et al. X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet. 1995;9(4):414-7. [Crossref] [PubMed]
- Mahlaoui N, Pellier I, Mignot C, Jais JP, Bilhou-Nabéra C, Moshous D, et al. Characteristics and outcome of early-onset, severe forms of Wiskott-Aldrich syndrome. Blood. 2013;121(9):1510-6. [Crossref] [PubMed]
- Sudhakar M, Rikhi R, Loganathan SK, Suri D, Singh S. Autoimmunity in Wiskott-Aldrich Syndrome: Updated Perspectives. Appl Clin Genet. 2021;14:363-88. [Crossref] [PubMed] [PMC]
- Candotti F. Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol. 2018;38(1):13-27. [Crossref] [PubMed]
- Mallhi KK, Petrovic A, Ochs HD. Hematopoietic Stem Cell Therapy for Wiskott-Aldrich Syndrome: Improved Outcome and Quality of Life. J Blood Med. 2021;12:435-47. [Crossref] [PubMed] [PMC]
- Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577-80. [Crossref] [PubMed]
- Taylor AM, Lam Z, Last JI, Byrd PJ. Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet. 2015;87(3):199-208. [Crossref] [PubMed]
- Moin M, Aghamohammadi A, Kouhi A, Tavassoli S, Rezaei N, Ghaffari SR, et al. Ataxia-telangiectasia in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol. 2007;37(1):21-8. [Crossref] [PubMed]
- Waldmann TA, Broder S, Goldman CK, Frost K, Korsmeyer SJ, Medici MA. Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia. J Clin Invest. 1983;71(2):282-95. [Crossref] [PubMed] [PMC]
- McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL, et al. Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol. 2010;45(9):847-59. [Crossref] [PubMed] [PMC]
- Salzer U, Grimbacher B. TACI deficiency - a complex system out of balance. Curr Opin Immunol. 2021;71:81-8. [Crossref] [PubMed]
- Shin JJ, Liauw D, Siddiqui S, Lee J, Chung EJ, Steele R, et al. Immunological and Clinical Phenotyping in Primary Antibody Deficiencies: a Growing Disease Spectrum. J Clin Immunol. 2020;40(4):592-601. [Crossref] [PubMed] [PMC]
- Poodt AEJ, Driessen GJA, De Klein A, Van Dongen JJM, Van Der Burg M, De Vries E. TACI mutations and disease susceptibility in patients with common variable immunodeficiency. Clin Exp Immunol. 2008;156(1):35-9. [Crossref] [PubMed] [PMC]
- Xu S, Lam KP. Transmembrane Activator and CAML Interactor (TACI): Another Potential Target for Immunotherapy of Multiple Myeloma? Cancers. 2020;12(4). [Crossref] [PubMed] [PMC]
- Leonardi L, Lorenzetti G, Carsetti R, Ferrari S, Di Felice A, Cinicola B, et al. Rare TACI Mutation in a 3-Year-Old Boy With CVID Phenotype. Front Pediatr. 2019;7:418. [Crossref] [PubMed] [PMC]
- He B, Santamaria R, Xu W, Cols M, Chen K, Puga I, et al. The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88. Nat Immunol. 2010;11(9):836-45. [Crossref] [PubMed] [PMC]
- Rachid R, Castigli E, Geha RS, Bonilla FA. TACI mutation in common variable immunodeficiency and IgA deficiency. Curr Allergy Asthma Rep. 2006;6(5):357-62. [Crossref] [PubMed]
- Hayden MS, Ghosh S. NF-κB in immunobiology. Curr Allergy Asthma Rep. 2011;21(2):223-44. [Crossref] [PubMed] [PMC]
- Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 2007;8(1):49-62. [Crossref] [PubMed]
- Courtois G. The NF-kappaB signaling pathway in human genetic diseases. Cellular and molecular life sciences : Cell Mol Life Sci. 2005;62(15):1682-91. [Crossref] [PubMed] [PMC]
- Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113(4):725-33. [Crossref] [PubMed]
- Cardenas-Morales M, Hernandez-Trujillo VP. Agammaglobulinemia: from X-linked to Autosomal Forms of Disease. Clin Rev Allergy Immunol. 2022;63(1):22-35. [Crossref] [PubMed] [PMC]
- Stephens DM, Byrd JC. Resistance to Bruton tyrosine kinase inhibitors: the Achilles heel of their success story in lymphoid malignancies. Blood. 2021;138(13):1099-109. [Crossref] [PubMed] [PMC]
- Skånland SS, Mato AR. Overcoming resistance to targeted therapies in chronic lymphocytic leukemia. Blood Adv. 2021;5(1):334-43. [Crossref] [PubMed] [PMC]
- Xu T, Zhao Q, Li W, Chen X, Xue X, Chen Z, et al. X-linked lymphoproliferative syndrome in mainland China: review of clinical, genetic, and immunological characteristic. Eur J Pediatr. 2020;179(2):327-38. [Crossref] [PubMed] [PMC]
- Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev. 2005;203:180-99. [Crossref] [PubMed]
- Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53-62. [Crossref] [PubMed] [PMC]
- Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462-9. [Crossref] [PubMed]
- Rieux-Laucat F, Magérus-Chatinet A, Neven B. The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol. 2018;38(5):558-68. [Crossref] [PubMed]
- Molnár E, Radwan N, Kovács G, Andrikovics H, Henriquez F, Zarafov A, et al. Key diagnostic markers for autoimmune lymphoproliferative syndrome with molecular genetic diagnosis. Blood. 2020;136(17):1933-45. [Crossref] [PubMed]
- Consonni F, Gambineri E, Favre C. ALPS, FAS, and beyond: from inborn errors of immunity to acquired immunodeficiencies. Ann Hematol. 2022;101(3):469-84. [Crossref] [PubMed] [PMC]
- Ke R, Zhu Y, Deng F, Xu D. Renal Involvement in IPEX Syndrome With a Novel Mutation of FOXP3: A Case Report. Front Genet. 2021;12:752775. [Crossref] [PubMed] [PMC]
- Georgiev P, Charbonnier L-M, Chatila TA. Regulatory T Cells: the Many Faces of Foxp3. J Clin Immunol. 2019;39(7):623-40. [Crossref] [PubMed] [PMC]
- Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol. 2021;12:12:626172. [Crossref] [PubMed] [PMC]
- Soler-Palacín P, Garcia-Prat M, Martín-Nalda A, Franco-Jarava C, Rivière JG, Plaja A, et al. LRBA Deficiency in a Patient With a Novel Homozygous Mutation Due to Chromosome 4 Segmental Uniparental Isodisomy. Front Immunol. 2018;9:2397. [Crossref] [PubMed] [PMC]
- Meshaal S, El Hawary R, Adel R, Abd Elaziz D, Erfan A, Lotfy S, et al. Clinical Phenotypes and Immunological Characteristics of 18 Egyptian LRBA Deficiency Patients. J Clin Immunol. 2020;40(6):820-32. [Crossref] [PubMed]
- Mangodt TC, Vanden Driessche K, Norga KK, Moes N, De Bruyne M, Haerynck F, et al. Central nervous system manifestations of LRBA deficiency: case report of two siblings and literature review. BMC Pediatr. 2023;23(1):353. [Crossref] [PubMed] [PMC]
- Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. 2017;129(11):1458-68. [Crossref] [PubMed] [PMC]
- Krausz M, Mitsuiki N, Falcone V, Komp J, Posadas-Cantera S, Lorenz H-M, et al. Do common infections trigger disease-onset or -severity in CTLA-4 insufficiency? Front Immunol. 2022;13:1011646. [Crossref] [PubMed] [PMC]
- Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016;128(8):1037-42. [Crossref] [PubMed] [PMC]
- Hoshino A, Toyofuku E, Mitsuiki N, Yamashita M, Okamoto K, Yamamoto M, et al. Clinical Courses of IKAROS and CTLA4 Deficiencies: A Systematic Literature Review and Retrospective Longitudinal Study. Front Immunol. 2022;13:1011646. [Crossref] [PubMed] [PMC]
- Hojabri M, Farsi Y, Jamee M, Abolhassani H, Khani HHK, Karimi A, et al. JAGN1 mutation with distinct clinical features; two case reports and literature review. BMC Pediatrics. 2023;23(1):206. [Crossref] [PubMed] [PMC]
- Çipe FE, Aydoğmuş Ç, Baskın K, Keskindemirci G, Garncarz W, Boztuğ K. A rare case of syndromic severe congenital neutropenia: JAGN1 mutation. Turk J Pediatr. 2020;62(2):326-331. [Crossref] [PubMed]
- Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol. 2020;11:1850. [Crossref] [PubMed] [PMC]
- La Manna MP, Orlando V, Tamburini B, Badami GD, Dieli F, Caccamo N. Harnessing Unconventional T Cells for Immunotherapy of Tuberculosis. Front Immunol. 2020;11:2107. [Crossref] [PubMed] [PMC]
- Holl EK, Frazier VN, Landa K, Beasley GM, Hwang ES, Nair SK. Examining Peripheral and Tumor Cellular Immunome in Patients With Cancer. Front Immunol. 2019;10:1767. [Crossref] [PubMed] [PMC]
- Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86-92. [Crossref] [PubMed]
- Tran TT, Vu QV, Wada T, Yachie A, Le Thi Minh H, Nguyen SN. Novel HAX1 Gene Mutation in a Vietnamese Boy with Severe Congenital Neutropenia. Case reports in pediatrics. 2018;2018:2798621. [Crossref] [PubMed] [PMC]
- Boztug K, Klein C. Genetic etiologies of severe congenital neutropenia. Curr Opin Pediatr. 2011;23(1):21-6. [Crossref] [PubMed]
- Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335(26):1956-61. [Crossref] [PubMed]
- Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26(6):454-70. [Crossref] [PubMed] [PMC]
- Boisson-Dupuis S, Bustamante J, El-Baghdadi J, Camcioglu Y, Parvaneh N, El Azbaoui S, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev. 2015;264(1):103-20. [Crossref] [PubMed] [PMC]
- Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, et al. Molecular biology of autoinflammatory diseases. Inflamm Regen. 2021;41(1):33. [Crossref] [PubMed] [PMC]
- El-Shebiny EM, Zahran ES, Shoeib SA, Habib ES. Bridging autoinflammatory and autoimmune diseases. Egypt J Intern Med. 2021;33(1):11. [Crossref]
- Havnaer A, Han G. Autoinflammatory Disorders: A Review and Update on Pathogenesis and Treatment. Am J Clin Dermatol. 2019;20(4):539-64. [Crossref] [PubMed]
- Welzel T, Oefelein L, Twilt M, Pfister M, Kuemmerle-Deschner JB, Benseler SM. Tapering of biological treatment in autoinflammatory diseases: a scoping review. Pediatr Rheumatol Online J. 2022;20(1):67. [Crossref] [PubMed] [PMC]
- Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013-22. [Crossref] [PubMed]
- Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135-9. [Crossref] [PubMed] [PMC]
- Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140-6. [Crossref] [PubMed] [PMC]
- Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, et al. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood. 2021;138(12):1019-33. [Crossref] [PubMed] [PMC]
- Chen X, Yuan Y, Ren W, Zhou F, Huang X, Pu J, et al. Pan-Cancer Integrated Analysis Identification of SASH3, a Potential Biomarker That Inhibits Lung Adenocarcinoma Progression. Front Oncol. 2022;12:927988. [Crossref] [PubMed] [PMC]
- Labrador-Horrillo M, Franco-Jarava C, Garcia-Prat M, Parra-Martínez A, Antolín M, Salgado-Perandrés S, et al. Case Report: X-Linked SASH3 Deficiency Presenting as a Common Variable Immunodeficiency. Front Immunol. 2022;13:881206. [Crossref] [PubMed] [PMC]
- Wu B, Rice L, Shrimpton J, Lawless D, Walker K, Carter C, et al. Biallelic mutations in calcium release activated channel regulator 2A (CRACR2A) cause a primary immunodeficiency disorder. Elife. 2021;10:e72559. [Crossref] [PubMed] [PMC]
- Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477-85.e1. [Crossref] [PubMed]
- Béziat V, Rapaport F, Hu J, Titeux M, Bonnet des Claustres M, Bourgey M, et al. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell. 2021;184(14):3812-28.e30.
- Le Coz C, Nguyen DN, Su C, Nolan BE, Albrecht AV, Xhani S, et al. Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients. J Exp Med. 2021;218(7):e20201750. [Crossref] [PubMed] [PMC]
- Yeh TW, Okano T, Naruto T, Yamashita M, Okamura M, Tanita K, et al. APRIL-dependent lifelong plasmacyte maintenance and immunoglobulin production in humans. J Allergy Clin Immunol. 2020;146(5):1109-20.e4. [Crossref] [PubMed]
- Staels F, Lorenzetti F, De Keukeleere K, Willemsen M, Gerbaux M, Neumann J, et al. A Novel Homozygous Stop Mutation in IL23R Causes Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol. 2022;42(8):1638-52. [Crossref] [PubMed] [PMC]
- Hadjadj J, Castro CN, Tusseau M, Stolzenberg MC, Mazerolles F, Aladjidi N, et al. Early-onset autoimmunity associated with SOCS1 haploinsufficiency. Nat Commun. 2020;11(1):5341. [Crossref] [PubMed] [PMC]
- Sobah ML, Liongue C, Ward AC. SOCS Proteins in Immunity, Inflammatory Diseases, and Immune-Related Cancer. Front Med (Lausanne). 2021;8:727987. [Crossref] [PubMed] [PMC]
- Banday AZ, Kaur A, Akagi T, Bhattarai D, Muraoka M, Dev D, et al. A Novel CEBPE Variant Causes Severe Infections and Profound Neutropenia. J Clin Immunol. 2022;42(7):1434-50. [Crossref] [PubMed]
- Zhang J, Jin T, Aksentijevich I, Zhou Q. RIPK1-Associated Inborn Errors of Innate Immunity. Front Immunol. 2021:676946. [Crossref] [PubMed] [PMC]
- Zhou R, Zhang Q, Xu P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Biochim Biophys Sin (Shanghai). 2020;52(7):757-67. [Crossref] [PubMed]
- Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P, Ospina Cardona D, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021;137(26):3676-81. [Crossref] [PubMed] [PMC]