Congenital Anomalies of the Vitreus

oftalmoloji-17-2-kapak-wosonayiyok

Özgür ARTUNAYa , Merve ÖZBEKa

aUniversity of Health Sciences Faculty of Medicine, İstanbul Beyoğlu Eye Training and Research Hospital, Department of Ophthalmology, İstanbul, Türkiye

ABSTRACT
The primary vitreous harbors a rich network of blood vessels during the first trimester of embryonic development. During the second trimester, these vessels progressively regress as the secondary vitreous forms, ultimately leading to the transformation of the vitreous into an optically transparent gel. During normal development at around 30 weeks of gestational age, fetal vasculature regresses without complications; however, in 95% of premature infants and 3% of full-term infants, fetal vasculature persists. Incomplete resorption of these structures during development can result in vitreoretinal disorders. Hereditary vitreoretinopathies are classically characterized by early-onset cataracts, vitreous anomalies, coarse fibrils and membranes, and retinal detachment. In recent years, our understanding of hereditary vitreoretinopathies has significantly expanded with the identification of disease genes for all classical syndromes. In this review, we will discuss congenital vitreous anomalies and hereditary vitreoretinopathies characterized by degeneration and developmental disorders of the vitreous.
Keywords: Hereditary vitreoretinopathy; vitreous; persistent fetal vasculature

Referanslar

  1. Goldberg MF. Persistent fetal vasculature (PFV): an integrated interpretation of signs and symptoms associated with persistent hyperplastic primary vitreous (PHPV). LIV Edward Jackson Memorial Lecture. Am J Ophthalmol. 1997;124(5):587-626. [Crossref]  [PubMed]
  2. Vasireddy D, Atwi JE. Unilateral Leukocoria in an Infant. Cureus. 2020;12(11):e11596. [Crossref]
  3. Kumawat BL, Chawla R, Venkatesh P, Tripathy K. Inflammatory optic disc neovascularisation managed with oral steroids/immunosuppressants and intravitreal ranibizumab. BMJ Case Rep. 2017;2017:bcr2017222262. [Crossref]  [PubMed]  [PMC]
  4. Venkateswaran N, Moster SJ, Goldhagen BE. Bergmeister Papilla With Overlying Traction. JAMA Ophthalmol. 2019;137(9):e185915. [Crossref]  [PubMed]
  5. Mansour AM, Kozak I, Saatci AO, Ascaso FJ, Broc L, Battaglia M, et al. Prepapillary vascular loop-a new classification. Eye (Lond). 2021;35(2):425-32. [Crossref]  [PubMed]  [PMC]
  6. Susanna BN, Barbosa GCS, de Almeida L, Neto JZA. Prepapillary Arterial Loop Associated with Central Retinal Artery Occlusion: A Case Report. J Curr Ophthalmol. 2021;33(2):212-4. [Crossref]  [PubMed]  [PMC]
  7. Hsieh YT, Yang CM. The clinical study of congenital looped/coiled peripapillary retinal vessels. Eye (Lond). 2005;19(8):906-9. [Crossref]  [PubMed]
  8. Robben P, Van Ginderdeuren R, Thoma D, Deghislage C, Van Calster J, Blanckaert J, Casteels I. Primary vitreous cysts. GMS Ophthalmol Cases. 2020;10:Doc18. [Crossref]
  9. Yoshida N, Ikeda Y, Murakami Y, Nakatake S, Tachibana T, Notomi S, et al. Vitreous cysts in patients with retinitis pigmentosa. Jpn J Ophthalmol. 2015;59(6):373-7. [Crossref]  [PubMed]
  10. Alkın Z, Ozkaya A, Perente I, Yazıcı AT, Demirok A. Vitreus Kisti ve Sektör Retinitis Pigmentoza Birlikteliği. Ret-Vit. 2014;22:76-8.
  11. FRANCOIS J. Pre-papillary cyst developed from remnants of the hyaloid artery. Br J Ophthalmol. 1950;34(6):365-8. [Crossref]  [PubMed]  [PMC]
  12. Orellana J, O'Malley RE, McPherson AR, Font RL. Pigmented free-floating vitreous cysts in two young adults. Electron microscopic observations. Ophthalmology. 1985;92(2):297-302. [Crossref]  [PubMed]
  13. Kumar DA, Balaraman P, Agarwal A. Persistent asymptomatic vitreous cyst with ten years follow-up: A case report. Indian J Ophthalmol. 2020;68(10):2286-7. [Crossref]  [PubMed]  [PMC]
  14. Cerón O, Lou PL, Kroll AJ, Walton DS. The vitreo-retinal manifestations of persistent hyperplasic primary vitreous (PHPV) and their management. Int Ophthalmol Clin. 2008;48(2):53-62. [Crossref]  [PubMed]
  15. Sanghvi DA, Sanghvi CA, Purandare NC. Bilateral persistent hyperplastic primary vitreous. Australas Radiol. 2005;49(1):72-4. [Crossref]  [PubMed]
  16. Shastry BS. Persistent hyperplastic primary vitreous: congenital malformation of the eye. Clin Exp Ophthalmol. 2009;37(9):884-90. [Crossref]  [PubMed]
  17. Prakhunhungsit S, Berrocal AM. Diagnostic and Management Strategies in Patients with Persistent Fetal Vasculature: Current Insights. Clin Ophthalmol. 2020;14:4325-35. [Crossref]  [PubMed]  [PMC]
  18. Gan NY, Lam WC. Retinal detachments in the pediatric population. Taiwan J Ophthalmol. 2018;8(4):222-36. [Crossref]  [PubMed]  [PMC]
  19. Sisk RA, Berrocal AM, Feuer WJ, Murray TG. Visual and anatomic outcomes with or without surgery in persistent fetal vasculature. Ophthalmology. 2010;117(11):2178-83.e1-2. [Crossref]  [PubMed]
  20. Özdek Ş, Özdemir Zeydanlı E, Baumal C, Hoyek S, Patel N, Berrocal A, et al. Avascular Peripheral Retina in Infants. Turk J Ophthalmol. 2023;53(1):44-57. [Crossref]  [PubMed]  [PMC]
  21. Brennan RC, Wilson MW, Kaste S, Helton KJ, McCarville MB. US and MRI of pediatric ocular masses with histopathological correlation. Pediatr Radiol. 2012;42(6):738-49. [Crossref]  [PubMed]  [PMC]
  22. Azcarate PM, Grace SF, Shi W, Chang TC, Cavuoto KM. B-Scan Echography in Cases of Confirmed Persistent Fetal Vasculature. J Pediatr Ophthalmol Strabismus. 2016;53(4):252-3. [Crossref]  [PubMed]
  23. Deshmukh S, Magdalene D, Gupta K. Persistent fetal vasculature. TNOA Journal of Ophthalmic Science and Research. 2018;56(2):132-3. [Crossref]
  24. Sun MH, Kao LY, Kuo YH. Persistent hyperplastic primary vitreous: magnetic resonance imaging and clinical findings. Chang Gung Med J. 2003;26(4):269-76.
  25. Huang HC, Lai CH, Kang EY, Chen KJ, Wang NK, Liu L, et al. Retrospective Analysis of Surgical Outcomes on Axial Length Elongation in Eyes with Posterior and Combined Persistent Fetal Vasculature. Int J Mol Sci. 2023;24(6):5836. [Crossref]  [PubMed]  [PMC]
  26. Edwards AO. Clinical features of the congenital vitreoretinopathies. Eye (Lond). 2008;22(10):1233-42. [Crossref]  [PubMed]
  27. Snead MP, McNinch AM, Poulson AV, Bearcroft P, Silverman B, Gomersall P, et al. Stickler syndrome, ocular-only variants and a key diagnostic role for the ophthalmologist. Eye (Lond). 2011;25(11):1389-400. [Crossref]  [PubMed]  [PMC]
  28. Abeysiri P, Bunce C, da Cruz L. Outcomes of surgery for retinal detachment in patients with Stickler syndrome: a comparison of two sequential 20-year cohorts. Graefes Arch Clin Exp Ophthalmol. 2007;245(11):1633-8. [Crossref]  [PubMed]
  29. Belin PJ, Naravane AV, Lu S, Li C, Lum F, Quiram PA. Vitreoretinopathy-Associated Pediatric Retinal Detachment Treatment Outcomes: IRIS® Registry (Intelligent Research in Sight) Analysis. Ophthalmol Sci. 2023;3(3):100273. [Crossref]  [PubMed]  [PMC]
  30. Reddy DN, Yonekawa Y, Thomas BJ, Nudleman ED, Williams GA. Long-term surgical outcomes of retinal detachment in patients with Stickler syndrome. Clin Ophthalmol. 2016;10:1531-4. [Crossref]  [PubMed]  [PMC]
  31. Taylor K, Su M, Richards Z, Mamawalla M, Rao P, Chang E. Outcomes in Retinal Detachment Repair and Laser Prophylaxis for Syndromes with Optically Empty Vitreous. Ophthalmol Retina. 2023;7(10):848-56. [Crossref]  [PubMed]
  32. Boysen KB, La Cour M, Kessel L. Ocular complications and prophylactic strategies in Stickler syndrome: a systematic literature review. Ophthalmic Genet. 2020;41(3):223-34. [Crossref]  [PubMed]
  33. Fincham GS, Pasea L, Carroll C, McNinch AM, Poulson AV, Richards AJ, et al. Prevention of retinal detachment in Stickler syndrome: the Cambridge prophylactic cryotherapy protocol. Ophthalmology. 2014;121(8):1588-97. [Crossref]  [PubMed]
  34. Meredith SP, Richards AJ, Flanagan DW, Scott JD, Poulson AV, Snead MP. Clinical characterisation and molecular analysis of Wagner syndrome. Br J Ophthalmol. 2007;91(5):655-9. [Crossref]  [PubMed]  [PMC]
  35. Graemiger RA, Niemeyer G, Schneeberger SA, Messmer EP. Wagner vitreoretinal degeneration. Follow-up of the original pedigree. Ophthalmology. 1995;102(12):1830-9. [Crossref]  [PubMed]
  36. Lee MM, Ritter R 3rd, Hirose T, Vu CD, Edwards AO. Snowflake vitreoretinal degeneration: follow-up of the original family. Ophthalmology. 2003;110(12):2418-26. [Crossref]  [PubMed]
  37. Sikkink SK, Biswas S, Parry NR, Stanga PE, Trump D. X-linked retinoschisis: an update. J Med Genet. 2007;44(4):225-32. [Crossref]  [PubMed]  [PMC]
  38. George ND, Yates JR, Bradshaw K, Moore AT. Infantile presentation of X linked retinoschisis. Br J Ophthalmol. 1995;79(7):653-7. [Crossref]  [PubMed]  [PMC]
  39. George ND, Yates JR, Moore AT. Clinical features in affected males with X-linked retinoschisis. Arch Ophthalmol. 1996;114(3):274-80. [Crossref]  [PubMed]
  40. Tanimoto N, Usui T, Takagi M, Hasegawa S, Abe H, Sekiya K, et al. Electroretinographic findings in three family members with X-linked juvenile retinoschisis associated with a novel Pro192Thr mutation of the XLRS1 gene. Jpn J Ophthalmol. 2002;46(5):568-76. [Crossref]  [PubMed]
  41. Genead MA, Fishman GA, Walia S. Efficacy of sustained topical dorzolamide therapy for cystic macular lesions in patients with X-linked retinoschisis. Arch Ophthalmol. 2010;128(2):190-7. [Crossref]  [PubMed]
  42. Tantri A, Vrabec TR, Cu-Unjieng A, Frost A, Annesley WH Jr, Donoso LA. X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol. 2004;49(2):214-30. [Crossref]  [PubMed]
  43. Wu WC, Drenser KA, Capone A, Williams GA, Trese MT. Plasmin enzyme-assisted vitreoretinal surgery in congenital X-linked retinoschisis: surgical techniques based on a new classification system. Retina. 2007;27(8):1079-85. [Crossref]  [PubMed]
  44. Gupta MP, Parlitsis G, Tsang S, Chan RV. Resolution of foveal schisis in X-linked retinoschisis in the setting of retinal detachment. J AAPOS. 2015;19(2):172-4. [Crossref]  [PubMed]
  45. Yanagi Y, Takezawa S, Kato S. Distinct functions of photoreceptor cell-specific nuclear receptor, thyroid hormone receptor beta2 and CRX in one photoreceptor development. Invest Ophthalmol Vis Sci. 2002;43(11):3489-94.
  46. García Caride S, López Guajardo L, Donate López J. Goldmann-Favre/Enhanced S Cone Syndrome, 30 years mysdiagnosed as gyrate atrophy. Am J Ophthalmol Case Rep. 2021;21:101028. [Crossref]  [PubMed]  [PMC]
  47. de Carvalho ER, Robson AG, Arno G, Boon CJF, Webster AA, Michaelides M. Enhanced S-Cone Syndrome: Spectrum of Clinical, Imaging, Electrophysiologic, and Genetic Findings in a Retrospective Case Series of 56 Patients. Ophthalmol Retina. 2021;5(2):195-214. [Crossref]  [PubMed]  [PMC]
  48. Schorderet DF, Escher P. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum Mutat. 2009;30(11):1475-85. [Crossref]  [PubMed]
  49. Feiler-Ofry V, Adam A, Regenbogen L, Godel V, Stein R. Hereditary vitreoretinal degeneration and night blindness. Am J Ophthalmol. 1969;67(4):553-8. [Crossref]  [PubMed]
  50. Singh Grewal S, Smith JJ, Carr AF. Bestrophinopathies: perspectives on clinical disease, Bestrophin-1 function and developing therapies. Ther Adv Ophthalmol. 2021;13:2515841421997191. [Crossref]  [PubMed]  [PMC]