Copper-64 Radiopharmaceuticals: An Overview

eczacilikbilimleri-1-2-2021

Humeyra BATTALa, A. Yekta ÖZERa

aHacettepe University Faculty of Pharmacy, Department of Radiopharmacy, Ankara, TURKEY

ABSTRACT
Positron Emission Tomography (PET), one of the advanced imaging practice in the field of nuclear medicine, ensures three-dimensional imaging of body functions and metabolism. PET has advanced imaging studies, especially in the field of oncology. The fact that PET imaging has advantages compared to other imaging methods gradually increases the interest in PET and PET radiopharmaceuticals. Particularly brief half-lives of conventional PET radiopharmaceuticals (18F, 11C, 13N, 15O) cause some problems. This has increased the interest of researchers in radioisotopes with more prolonged halflives like 68Ga, 64Cu, 86Y, 89Zr, 124I. Copper is an element that plays a significant role in many biological processes in the body. There are five significant copper radioisotopes with appropriate properties that can be used in nuclear medicine. These are 64Cu, 67Cu, 62Cu, 61Cu and 60Cu. The Cu-64 radioisotope is an interesting PET agent because it has a half-life of 12.7 hours and decay properties suitable for diagnosis and therapy. In addition, its versatile coordination chemistry allows it to react with various chelate systems. Therefore, nowadays, preclinical and clinical studies on Cu-64 are increasing gradually and promising results are obtained.
Keywords: PET; PET radiopharmaceuticals; Cu-64 radiopharmaceuticals

Referanslar

  1. Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol. 2010;73(3):461-9. [Crossref]  [PubMed]
  2. Ocak M. Radiopharmaceuticals of PET. Bulletin of Thoracic Surgery. 2015;6(2):154-60. [Crossref]
  3. Atlıhan Gündoğdu E, Özgenc E, Ekinci M, İlem Özdemir D, Aşıkoğlu M. Radiopharmaceuticals used in imaging and treatment. Nuclear Medicine. 2018;7(1):24-34. [Crossref]
  4. Papathanassiou D, Bruna Muraille C, Liehn JC, Nguyen TD, Curé H. Positron emission tomography in oncology: present and future of PET and PET/CT. Crit Rev Oncol Hematol. 2009;72(3):239-54. [Crossref]  [PubMed]
  5. Silindir M, Özer AY, Erdoğan S. The use and importance of liposomes in positron emission tomography. Drug Deliv. 2012;19(1):68-80. [Crossref]  [PubMed]
  6. Silindir M, Özer AY. Recently developed radiopharmaceuticals for positron emission tomography (PET). FABAD J Pharm Sci. 2008;33(3):153-62.
  7. Ikotun OF, Lapi SE. The rise of metal radionuclides in medical imaging: copper-64, zirconium-89 and yttrium-86. Future Med Chem. 2011;3(5):599-621. [Crossref]  [PubMed]
  8. Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, et al. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis. 2020;1866(6):165717. [Crossref]  [PubMed]
  9. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev. 2008;108(5):1501-16. [Crossref]  [PubMed]
  10. Saha GB. Production of radionuclides. Fundamentals of Nuclear Pharmacy. 8th ed. New York: Springer; 2010. p.62-3. [Crossref]
  11. Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol. 2021;92(Special Issue):241-69. [Crossref]  [PubMed]
  12. Severin GW, Engle JW, Barnhart TE, Nickles RJ. 89Zr radiochemistry for positron emission tomography. Med Chem. 2011;7(5):389-94. [Crossref]  [PubMed]  [PMC]
  13. Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. Drug Des Devel Ther. 2018;12(1):3235-45. [Crossref]  [PubMed]  [PMC]
  14. Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J Labelled Comp Radiopharm. 2014;57(4):224-30. [Crossref]  [PubMed]  [PMC]
  15. Hueting R. Radiocopper for the imaging of copper metabolism. J Labelled Comp Radiopharm. 2014;57(4):231-8. [Crossref]  [PubMed]
  16. Boschi A, Martini P, Janevik Ivanovska E, Duatti A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today. 2018;23(8):1489-501. [Crossref]  [PubMed]
  17. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24(4):379- 93. [Crossref]  [PubMed]  [PMC]
  18. Bourgeois M, Rajerison H, Guerard F, Mougin Degraef M, Barbet J, Michel N, et al. Contribution of [64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-MISO-a selected review. Nucl Med Rev Cent East Eur. 2011;14(2):90-5. [Crossref]  [PubMed]
  19. Xie Q, Zhu H, Wang F, Meng X, Ren Q, Xia C, et al. Establishing reliable Cu-64 production process: from target plating to molecular specific tumor micro-PET imaging. Molecules. 2017;22(4):641. [Crossref]  [PubMed]  [PMC]
  20. Sun X, Anderson CJ. Production and applications of Copper-64 radiopharmaceuticals. In: Conn PM, ed. Methods in Enzymology. 1th ed. New York: Academic Press; 2004. p.237-61. [Crossref]  [PubMed]
  21. Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, et al. 64Cu-based radiopharmaceuticals in molecular imaging. Technol Cancer Res Treat. 2019;18(1):1-10. [Crossref]  [PubMed]  [PMC]
  22. Zinn KR, Chaudhuri TR, Cheng TP, Morris JS, Meyer WA Jr. Production of no-carrier-added 64Cu from zinc metal irradiated under boron shielding. Cancer. 1994;73(3 Suppl):774-8. [Crossref]  [PubMed]
  23. Szelecsényi F, Blessing G, Qaım SM. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot. 1993;44(3):575-80. [Crossref]
  24. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, et al. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl Med Biol. 1997;24(1):35-43. [Crossref]  [PubMed]
  25. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des. 2007;13(1):3-16. [Crossref]  [PubMed]
  26. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med. 2008;49(Suppl 2):129S-48S. [Crossref]  [PubMed]
  27. Vallabhajosula S, Solnes L, Vallabhajosula B. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med. 2011;41(4):246-64. [Crossref]
  28. Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours. Eur Radiol. 2007;17(4):861-72. [Crossref]  [PubMed]  [PMC]
  29. Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, et al. Basic characterization of 64Cu-ATSM as a radiotherapy agent. Nucl Med Biol. 2005;32(1):21-8. [Crossref]  [PubMed]
  30. Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res. 2020;10(1):33. [Crossref]  [PubMed]  [PMC]
  31. Lewis JS, Laforest R, Dehdashti F, Grigsby PW, Welch MJ, Siegel BA. An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix. J Nucl Med. 2008;49(7):1177-82. [Crossref]  [PubMed]  [PMC]
  32. Lopci E, Grassi I, Rubello D, Colletti PM, Cambioli S, Gamboni A, et al. Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin Nucl Med. 2016;41(2):e87-92. [Crossref]  [PubMed]
  33. Fani M, Maecke HR, Okarvi SM. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2(5):481-501. [Crossref]  [PubMed]  [PMC]
  34. Okarvi SM. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev. 2008;34(1):13-26. [Crossref]  [PubMed]
  35. Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods. 2009;48(2):161- 77. [Crossref]  [PubMed]
  36. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, et al. 64Cu-TETA- octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med. 2001;42(2):213-21.
  37. Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. 2020 FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals. 2021;14(2):145. [Crossref]  [PubMed]  [PMC]
  38. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales Gomez I, et al. Pegylated arg-gly- asp peptide: Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med. 2004;45(10):1776-83.
  39. Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Volkert WA, Jurisson SS, et al. In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by- side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med. 2007;48(8):1327-37. [Crossref]  [PubMed]
  40. Thakur ML, Aruva MR, Gariepy J, Acton P, Rattan S, Prasad S, et al. PET imaging of oncogene overexpression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J Nucl Med. 2004;45(8):1381-9.
  41. Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem. 2009;20(5):825-41. [Crossref]  [PubMed]  [PMC]
  42. Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40(3):167-81. [Crossref]  [PubMed]  [PMC]
  43. Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ. Receptor-binding, biodistribution, and metabolism studies of 64CuDOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm. 2008;23(2):158-71. [Crossref]  [PubMed]
  44. Cai W, Cao Q, Chen K, Zhang X, Chen X. 64Cu-Labeled chimeric anti-EGFR monoclonal antibody cetuximab for PET imaging of prostate cancer. J Nucl Med. 2006;47(Suppl 1):107P.
  45. Kurihara H, Hamada A, Yoshida M, Shimma S, Hashimoto J, Yonemori K, et al. 64CuDOTA- trastuzumab PET imaging and HER2 specificity of brain metastases in HER2-positive breast cancer patients. EJNMMI Res. 2015;5(8):1-8. [Crossref]  [PubMed]  [PMC]
  46. Woo SK, Jang SJ, Seo MJ, Park JH, Kim BS, Kim EJ, et al. Development of 64Cu-NOTATrastuzumab for HER2 targeting: a radiopharmaceutical with improved pharmacokinetics for human studies. J Nucl Med. 2019;60(1):26-33. [Crossref]  [PubMed]
  47. Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem. 2012;23(4):671-82. [Crossref]  [PubMed]  [PMC]
  48. Silindir Gunay M, Ozer AY. Nanosized drug delivery systems as radiopharmaceuticals. In: Ficai A, Mihai Grumezescu A, eds. Nanostructures for Cancer Therapy. 1th ed. Elseiver; 2017. p.563-92. [Crossref]
  49. Petersen AL, Binderup T, Rasmussen P, Henriksen JR, Elema DR, Kjaer A, et al. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials. 2011;32(9):2334-41. [Crossref]  [PubMed]
  50. Glaus C, Rossin R, Welch MJ, Bao G. In vivo evaluation of Cu-labeled magnetic nanoparticles as a dual-modality PET/MR imaging agent. Bioconjug Chem. 2010;21(4):715-22. [Crossref]  [PubMed]  [PMC]
  51. Andreozzi E, Seo JW, Ferrara K, Louie A. Novel method to label solid lipid nanoparticles with 64Cu for positron emission tomography imaging. Bioconjug Chem. 2011;22(4):808-18. [Crossref]  [PubMed]  [PMC]