CORONARY VENOUS SYSTEM PHYSIOLOGY, MICROCIRCULATION AND VENOUS RETURN

Anosh S. Sivashanmugarajah1 Ross Roberts-Thomson2

1Royal Adelaide Hospital, Department of Cardiology, SA, Australia
2Royal Adelaide Hospital, Department of Cardiology, SA, Australia

Sivashanmugarajah AS, Roberts- Thomson R. Coronary Venous System Physiology, Microcirculation and Venous Return. In: Altay S, Akşit E, Kemaloğlu Öz T editor. Coronary Venous System Diseases. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.27-38.

ABSTRACT

A fundamental yet often underappreciated component of coronary circulation is the coronary venous system. It plays a crucial role in returning deoxygenated blood to the right atrium, maintaining ad- equate cardiac function and metabolic equilibrium. This chapter will outline the physiology of the coronary venous system, highlighting the regulation of blood flow in the myocardium and venous return. Comprised of small veins, venules and the coronary sinus, the coronary venous network works in tandem with the coronary arteries to regulate myocardial perfusion and subsequently maintain a homeostatic balance between oxygen supply and metabolic demand.

The microcirculation which includes arterioles, capillaries and venules, help in facilitating oxygen, nutrient and waste exchange. This is important given the heart’s continual high metabolic activity. The coronary microcirculation is predominantly governed by metabolic, endothelial, neurogenic and myogenic mechanisms. Metabolic alterations at a local level including but not limited to increased levels of lactic acid, carbon dioxide and adenosine lead to vasodilation. This simultaneously augments coronary blood flow to match myocardial oxygen demand. Similarly, venous return is primarily affect- ed by a combination of pressure gradients and the myocardial contraction-relaxation cycle. This leads to efficient removal of deoxygenated blood from the coronary circuit. When coronary sinus pressure is elevated in disease states such as heart failure, the impaired venous return can consequently disrupt circulation and potentially lead to myocardial ischaemia. Venous return is also influenced by the auto- nomic nervous system with venous tone and blood flow distribution being affected by parasympathetic and sympathetic effects.

A comprehensive understanding of the physiology of the coronary venous system will assist in the timely diagnosis and management of cardiovascular diseases including but not limited to coronary artery disease and heart failure. This chapter will also review the role of dysfunction of the venous system in the exacerbation of these conditions, reinforcing the significance of appreciating it’s role in cardiovascular health. Advances in research and diagnostics are essential to better delineate the role of coronary venous function and physiology and thereby develop targeted therapies and treatment strate- gies for a range of cardiovascular diseases.

Keywords: Coronary venous system; Coronary microcirculation; Venous return; Myocardial perfusion; Coronary veins; Coronary sinus, Venous congestion, Cardiac venous drainage

Referanslar

  1. Ho YS, Sanchez-Quintana D, Becker EA. A review of the coronary venous system: a road less travelled. Heart Rhythm. 2004;1(1):107-112. [Crossref]  [PubMed]
  2. Kuo L, David MR and Chilian WM. Endothelial Modulation of Arteriolar Tone. Americal Physiological Society Journal. 1992;7(1):5-9. [Crossref]
  3. Duncker JD, Bache JR. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009-86. [Crossref]  [PubMed]
  4. Mustafa JS, Morrison RR, Teng B, Pelleg A. Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology. Handb Exp Pharmacol. 2009;193:161-188. [Crossref]  [PubMed]  [PMC]
  5. Von Ludinghausen M. Clinical anatomy of cardiac veins, Vv. cardiacae. Surgical and radiologic anatomy: SRA. 1987;9(2):159-68. [Crossref]  [PubMed]
  6. Sandoo A, van Zanten VJJ, Metsios G, Carroll D, Kitas G. The Endothelium and Its Role in Regulating Vascular Tone. The Open Cardiovascular Medicine Journal. 2010;4:302-312. [Crossref]  [PubMed]  [PMC]
  7. Goodwill GA, Dick MG, Kiel MA, Tune DJ. Regulation of Coronary Blood Flow. Compr Physiol. 2017;7(2):321-382. [Crossref]  [PubMed]  [PMC]
  8. Westerhof N, Lankhaar JW, Westerhod EB. The arterial Windkessel. Medical & biological Engineering & Computing. 2009;47(2):131-41. [Crossref]  [PubMed]
  9. Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. International Journal of Physiology, Pathophysiology and Pharmacology. 2018;10(1):17-28.
  10. Ramanathan T, Skinner H. Coronary blood flow. Continuing Education in Anaesthesia Critical Care & Pain. 2005;5(2):61-64. [Crossref]
  11. Taqueti RV, Di Carli FM. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. 2018;72(21):2625-2641. [Crossref]  [PubMed]  [PMC]
  12. Manzke R, Binner L, Bornstedt A, Merkle N, Lutz A, Gradinger R et al. Assessment of the coronary venous system in heart failure patients by blood pool agent enhanced whole-heart MRI. European radiology. 2011;21(4):799-806. [Crossref]  [PubMed]
  13. Klocke JF. Coronary blood flow in man. Progress in cardiovascular diseases. 1976;19(2):117-66. [Crossref]  [PubMed]
  14. Koerselman K, van der Graaf Y, Th. de Jaegere PP, Grobbee ED. Coronary Collaterals: An Important and Underexposed Aspect of Coronary Artery Disease. Circulation. 2003;107(19). [Crossref]  [PubMed]
  15. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Windecker S et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116(9):975-983. [Crossref]  [PubMed]
  16. Gregg ED. Effect of Coronary Perfusion Pressure or Coronary Flow on Oxygen Usage of the Myocardium. Circulation Research. 1963;13(6). [Crossref]  [PubMed]
  17. Carabello AB. Understanding Coronary Blood Flow: The Wave of the Future. Circulation. 2006;113(14). [Crossref]  [PubMed]
  18. Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549601. [Crossref]  [PubMed]  [PMC]
  19. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109-142. [Crossref]  [PubMed]
  20. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163): 411-415. [Crossref]  [PubMed]
  21. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387-423. [Crossref]  [PubMed]
  22. Gori T, Münzel T. Oxidative stress and endothelial dysfunction: therapeutic implications. Ann Med. 2011;43(4):259-72. [Crossref]  [PubMed]
  23. Seiler C. The human coronary collateral circulation. Heart. 2003;89(11):1352-7. [Crossref]  [PubMed]  [PMC]
  24. Pittman NR. Oxygen transport and exchange in the microcirculation. Microcirculation. 2005;12(1):59-70. [Crossref]  [PubMed]
  25. Kuo L, Hein WT. Vasomotor regulation of coronary microcirculation by oxidative stress: role of arginase. Frontiers in immunology. 2013;19(4):237. [Crossref]  [PubMed]  [PMC]
  26. Meininger GA, Davis MJ. Cellular mechanisms involved in the vascular myogenic response. Am J Physiol. 1992;263(3 Pt 2):H647-H659. [Crossref]  [PubMed]
  27. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. Journal of Molecular and Cellular Cardiology. 2012;52(4):794-801 https:// www.jmcc-online.com/article/S0022-2828(11)00428-7/abstract [Crossref]  [PubMed]
  28. Feigl OE. Neural control of coronary blood flow. J Vasc Res. 1998;35(2):85-92. [Crossref]  [PubMed]
  29. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanidis. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4-18. [Crossref]  [PubMed]
  30. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411-418. [Crossref]  [PubMed]
  31. Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res. 2016;118(11):1771-1785. [Crossref]  [PubMed]
  32. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509-515. [Crossref]  [PubMed]
  33. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868-874. [Crossref]  [PubMed]
  34. Gould KL, Johnson NP. Coronary physiology beyond coronary flow reserve in microvascular angina. J Am Coll Cardiol. 2018;72(21):2642-2662. [Crossref]  [PubMed]
  35. Meier P, Seiler C. The coronary collateral circulation - clinical relevances and therapeutic options. Heart. 2013;99(13):897-8. [Crossref]  [PubMed]
  36. Entman LM. Collateral Circulation of the Heart. Circulation. 2011;123(23). [Crossref]
  37. Ullrich H, Hammer P, Olschewski M et al. Coronary Venous Pressure and Microvascular Haemodynamics in Patients with Microvascular angina. JAMA Cardiology. 2023;8(10):979983 Sivashanmugarajah, Roberts-Thomson Coronary Venous System Physiology, Microcirculation and Venous Return [Crossref]  [PubMed]  [PMC]
  38. Wang H, Fan L, Choy J et al. Mechanisms of coronary sinus reducer for treatment of myocardial ischaemia: in silico study. J Appl Physiol. 2024;136(5):1157-1169 ncbi.nlm.nih.gov/articles/PMC11368528/ [Crossref]  [PubMed]  [PMC]
  39. Zehan I, Eotvos C, Moldovan M et al. Angiographic Anatomy of the Left Coronary Veins: Beyond Conventional Cardiac Resynchronisation Therapy. Current Cardiol Rep. 2025;27(1):58. [Crossref]  [PubMed]  [PMC]
  40. Konstam MA, Kramer DG, Patel AR, Maron SM, Udelson EJ. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4(1):98-108. [Crossref]  [PubMed]
  41. Sirajuddin A, Chen M, White C et al. Coronary venous anatomy and anomalies. Journal of Cardiovascular Computed Tomography. 2020;14(1):80-86 com/science/article/pii/S1934592519302540 [Crossref]  [PubMed]
  42. Young DB, San R. Control of Cardiac Output, Chapter 2 Venous Return. Morgan & Claypool Life Sciences. 2010 [Link]
  43. Pang C. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacology & Therapeutics. 2001;90(2):179-230 gov/11578657/ [Crossref]  [PubMed]
  44. Sabiston D, Gregg D. Effect of Cardiac Contraction on Coronary Blood Flow. Circulation. 1957;15(1): org/ [Crossref]  [PubMed]
  45. Gheorghiade M, Filippatos G, De Luca L, Burnett J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. The American journal of medicine. 2006;119(12 Suppl 1):S3-S10. [Crossref]  [PubMed]
  46. Paulus WJ, Tschöpe C. A novel paradigm for heart fail ure with preserved ejection fraction. J Am Coll Car diol. 2013;62(4):263-271. [Crossref]  [PubMed]
  47. Miura T, Hiramatsu T, Forbess J et al. Effects of Elevated Coronary Sinus Pressure on Coronary Blood Flow and Left Ventricular Function: Implications after the Fontan Operation. Circulation. 1995;92(9) CIR.92.9.298 [Crossref]  [PubMed]
  48. McDonagh AT, Metra M, Adamo M, Gardner SR, Baumbach A, Bohm M et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European heart journal. 2021;42(36):3599-3726. [Crossref]  [PubMed]
  49. Foley JM, Rajkumar AC, Ahmed-Jushuf F, Simader AF, Chotai S, Pathimagaraj HR et al. Coronary sinus reducer for the treatment of refractory angina (ORBITA-COSMIC): a randomised, placebo-controlled trial. The Lancet. 2024;403(10436):1543-1553. [Crossref]  [PubMed]