CRISPR/Cas9 Therapy in Cancer Treatment

tibbibiyolojiozel-2-2-24kapak

Ece ÇAKIROĞLUa,b, Şerif ŞENTÜRKa,b
aİzmir Biomedicine and Genome Center, İzmir, Türkiye
bDokuz Eylül University İzmir International Biomedicine and Genome Institute, İzmir, Türkiye

Çakıroğlu E, Şentürk Ş. CRISPR/Cas9 therapy in cancer treatment. In: Yar Sağlam AS, ed. Innovative Approaches in Cancer Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.44-52.

Makale Dili: EN

ABSTRACT
Cancer is a complex and highly lethal disease that develops as a result of cumulative genetic and non-genetic events. Developing tools and technologies for understanding and targeting mechanisms of cancer progression and drug resistance is crucial for designing effective strategies for its treatment. CRISPR/Cas9 has become an important tool in cancer research due to its effectiveness in identifying and targeting genetic alterations in cancer cells. This technology holds potential in various areas, ranging from inactivating driver genes to combating drug resistance. Moreover, data from preclinical and clinical studies indicate a promising future for CRISPR/Cas9 in cancer therapy. This review summarizes the applications of CRISPR/Cas9 technology in cancer research, spanning from two-dimensional cell culture to clinical trials.

Keywords: Clustered regularly interspaced short palindromic repeats; gene editing; neoplasms

Referanslar

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. [Crossref]  [PubMed]
  2. WORLD HEALTH STATISTICS: monitoring health for the sdgs, sustainable development goals. GENEVA: WORLD HEALTH ORGANIZATION; 2023.
  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. [Crossref]  [PubMed]
  4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429-33. [Crossref]  [PubMed]  [PMC]
  5. Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565-75. [Crossref]  [PubMed]
  6. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174-82. [Crossref]  [PubMed]
  7. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709-12. [Crossref]  [PubMed]
  8. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. [Crossref]  [PubMed]  [PMC]
  9. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84-7. [Crossref]  [PubMed]  [PMC]
  10. Zhang J, Li Y, Liu H, Zhang J, Wang J, Xia J, et al. Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. J Exp Clin Cancer Res. 2022;41(1):24. [Crossref]  [PubMed]  [PMC]
  11. Yu C, Luo D, Yu J, Zhang M, Zheng X, Xu G, et al. Genome-wide CRISPR-cas9 knockout screening identifies GRB7 as a driver for MEK inhibitor resistance in KRAS mutant colon cancer. Oncogene. 2022;41(2):191-203. [Crossref]  [PubMed]  [PMC]
  12. Sayed S, Paszkowski-Rogacz M, Schmitt LT, Buchholz F. CRISPR/Cas9 as a tool to dissect cancer mutations. Methods. 2019;164-165:36-48. [Crossref]  [PubMed]
  13. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173-83. [Crossref]  [PubMed]  [PMC]
  14. Davies R, Liu L, Taotao S, Tuano N, Chaturvedi R, Huang KK, et al. CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol. 2021;22(1):47. [Crossref]  [PubMed]  [PMC]
  15. Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M, He D, et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science. 2017;355(6320):aah7111. [Crossref]  [PubMed]  [PMC]
  16. Liu SJ, Malatesta M, Lien BV, Saha P, Thombare SS, Hong SJ, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol. 2020;21(1):83. [Crossref]  [PubMed]  [PMC]
  17. Joung J, Kirchgatterer PC, Singh A, Cho JH, Nety SP, Larson RC, et al. CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity. Nat Commun. 2022;13(1):1606. [Crossref]  [PubMed]  [PMC]
  18. Rodríguez Y, Unno K, Truica MI, Chalmers ZR, Yoo YA, Vatapalli R, et al. A Genome-Wide CRISPR Activation Screen Identifies PRRX2 as a Regulator of Enzalutamide Resistance in Prostate Cancer. Cancer Res. 2022;82(11):2110-23. [Crossref]  [PubMed]  [PMC]
  19. Kweon J, Jang AH, Shin HR, See JE, Lee W, Lee JW, et al. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene. 2020;39(1):30-5. [Crossref]  [PubMed]  [PMC]
  20. Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, Kennedy M, et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat Biotechnol. 2022;40(6):862-73. [Crossref]  [PubMed]  [PMC]
  21. Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, et al. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol. 2024. [Crossref]
  22. Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K. Organoid technology and applications in cancer research. J Hematol Oncol. 2018;11(1):116. [Crossref]  [PubMed]  [PMC]
  23. Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, et al. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med. 2023;8(5):e10559. [Crossref]  [PubMed]  [PMC]
  24. Zhou Z, Cong L, Cong X. Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Front Oncol. 2021;11:762184. [Crossref]  [PubMed]  [PMC]
  25. Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng. 2023;17(1):53. [Crossref]  [PubMed]  [PMC]
  26. Zhu J, Ji L, Chen Y, Li H, Huang M, Dai Z, et al. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov. 2023;9(1):72. [Crossref]  [PubMed]  [PMC]
  27. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256-62. [Crossref]  [PubMed]
  28. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521(7550):43-7. [Crossref]  [PubMed]
  29. Liu X, Cheng Y, Abraham JM, Wang Z, Wang Z, Ke X, et al. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids. Cancer Lett. 2018;436:109-18. [Crossref]  [PubMed]  [PMC]
  30. Dekkers JF, Whittle JR, Vaillant F, Chen HR, Dawson C, Liu K, et al. Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids. J Natl Cancer Inst. 2020;112(5):540-4. [Crossref]  [PubMed]  [PMC]
  31. Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, et al. A CRISPR/Cas9-Engineered ARID1A-Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discov. 2021;11(6):1562-81. [Crossref]  [PubMed]  [PMC]
  32. Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, et al. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 2016;5:e18489. [Crossref]  [PubMed]  [PMC]
  33. Boos SL, Loevenich LP, Vosberg S, Engleitner T, Öllinger R, Kumbrink J, et al. Disease Modeling on Tumor Organoids Implicates AURKA as a Therapeutic Target in Liver Metastatic Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2022;13(2):517-40. [Crossref]  [PubMed]  [PMC]
  34. Michels BE, Mosa MH, Streibl BI, Zhan T, Menche C, Abou-El-Ardat K, et al. Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell. 2020;26(5):782-92.e7. [Crossref]  [PubMed]
  35. Mircetic J, Camgöz A, Abohawya M, Ding L, Dietzel J, Tobar SG, et al. CRISPR/Cas9 Screen in Gastric Cancer Patient-Derived Organoids Reveals KDM1A-NDRG1 Axis as a Targetable Vulnerability. Small Methods. 2023;7(6):e2201605. [Crossref]  [PubMed]
  36. Mintz RL, Lao YH, Chi CW, He S, Li M, Quek CH, et al. CRISPR/Cas9-mediated mutagenesis to validate the synergy between PARP1 inhibition and chemotherapy in BRCA1-mutated breast cancer cells. Bioeng Transl Med. 2020;5(1):e10152. [Crossref]  [PubMed]  [PMC]
  37. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910-8. [Crossref]  [PubMed]  [PMC]
  38. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370-9. [Crossref]  [PubMed]  [PMC]
  39. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440-55. [Crossref]  [PubMed]  [PMC]
  40. Mou H, Kennedy Z, Anderson DG, Yin H, Xue W. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 2015;7(1):53. [Crossref]  [PubMed]  [PMC]
  41. Riedel M, Berthelsen MF, Cai H, Haldrup J, Borre M, Paludan SR, et al. In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene. 2021;40(13):2437-47. [Crossref]  [PubMed]  [PMC]
  42. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246-60. [Crossref]  [PubMed]  [PMC]
  43. Peng R, Cao J, Zhang C, Zhou J, Su BB, Tu DY, et al. In vivo CRISPR screen identifies LTN1 as a novel tumor suppressor ubiquitinating insulin-like growth factor 2 mRNA-binding protein 1 in hepatocellular carcinoma. Hepatol Commun. 2023;7(10):e0256. [Crossref]
  44. Wong LS, Wei L, Wang G, Law CT, Tsang FHC, Chin WC, et al. In Vivo Genome-Wide CRISPR Activation Screening Identifies Functionally Important Long Noncoding RNAs in Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2022;14(5):1053-76. [Crossref]  [PubMed]  [PMC]
  45. Lu XX, Yang WX, Pei YC, Luo H, Li XG, Wang YJ, et al. An In Vivo CRISPR Screen Identifies That SNRPC Promotes Triple-Negative Breast Cancer Progression. Cancer Res. 2023;83(12):2000-15. [Crossref]  [PubMed]
  46. Scheidmann MC, Castro-Giner F, Strittmatter K, Krol I, Paasinen-Sohns A, Scherrer R, et al. An In Vivo CRISPR Screen Identifies Stepwise Genetic Dependencies of Metastatic Progression. Cancer Res. 2022;82(4):681-94. [Crossref]  [PubMed]  [PMC]
  47. Hao M, Lu P, Sotropa S, Manupati K, Yeo SK, Guan JL. In vivo CRISPR knockout screen identifies p47 as a suppressor of HER2+ breast cancer metastasis by regulating NEMO trafficking and autophagy flux. Cell Rep. 2024;43(2):113780. [Crossref]  [PubMed]
  48. Yan G, Dai M, Poulet S, Wang N, Boudreault J, Daliah G, et al. Combined in vitro/in vivo genome-wide CRISPR screens in triple negative breast cancer identify cancer stemness regulators in paclitaxel resistance. Oncogenesis. 2023;12(1):51. [Crossref]  [PubMed]  [PMC]
  49. Li F, Huang Q, Luster TA, Hu H, Zhang H, Ng WL, et al. In Vivo Epigenetic CRISPR Screen Identifies Asf1a as an Immunotherapeutic Target in Kras-Mutant Lung Adenocarcinoma. Cancer Discov. 2020;10(2):270-87. [Crossref]  [PubMed]  [PMC]
  50. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413-8. [Crossref]  [PubMed]  [PMC]
  51. Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732-40. [Crossref]  [PubMed]
  52. Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365. [Crossref]  [PubMed]  [PMC]