Current Advancements and Treatments in Polypoidal Choroidal Vasculopathy

Dr. Kevser Gerçeker

Ankara Bilkent City Hospital, Department of Ophthalmology, Ankara, Türkiye

ABSTRACT

Polypoidal Choroidal Vasculopathy (PCV) is a vascular disease of the choroid characterized by a distinctive branching neovascular network (BNN) in the inner choroidal veins and this network ends in sac-like, thin- walled aneurysmal dilations called “polyps,” which clinically cause hemorrhagic and exudative disorders. PCV is primarily observed in individuals with pigmente races predominantly in Asian countries. It may cause sig- nificant vision loss and affect the quality of life. The most important cause of vision loss is hemorrhagic and exudative macular degeneration due to BNN and polyps. While advances of image technices of PCV, ıt can be difficult to distuingish from neovascular Age-related Macular Degeneration (nAMD). ICGA is considered to be gold standard for detection and evalution of PCV. In additionally, OCT is used for monitoring the disease activity and response to therapy. Various Treatment modalities for PCV include verteporfirin photodynamic therapy (PDT), anti-vascular endothelial growth factor(anti-VEGF) agents, thermal laser (TL) photocoagula- tion and a combination therapy. The safety and efficacy of anti-VEGF monotherapy, as well as its combination with verteporfin photodynamic therapy (PDT), have been confirmed globally. Thermal Laser Photocoagulas- tion could be useful in extrafoveal lesions with PCV. However, treatment remains challenging due to the ne- cessity of frequent follow-ups, the unavailability of PDT, and the requirement for multiple anti-VEGF injection visits, which increase the treatment burden and contribute to patients being lost to follow-up. There is a need for effective treatments that prolong the intervals between injections while maintaining both visual and ana- tomical improvements. Longer-acting molecules, such as brolucizumab, have demonstrated non-inferiority in best-corrected visual acuity (BCVA) gains and superior anatomical outcomes compared to other anti-VEGF agents. New theraphy agents such as, Faricimab and the port delivery system (PDS) show promise in enhanc- ing both the effectiveness and longevity of treatment.

Keywords: Polypoidal choroidal vasculopathy; Branching neovascular network; Polyps; Treatment

Referanslar

  1. Anantharaman G, Sheth J, Bhende M, et al. Polypoidal cho- roidal vasculopathy: pearls in diagnosis and management. Indian J Ophthalmol. 2018;66(7):896. [Crossref]  [PubMed]  [PMC]
  2. Wong CW, Wong TY, Cheung CM. Polypoidal choroi- dal vasculopathy in Asians. J Clin Med 2015;4:782 821. [Crossref]  [PubMed]  [PMC]
  3. Kabedi NN, Kayembe DL, Elongo GM, Mwanza JC. Polyp- oidal choroidal vasculopathy in congolese patients. J Oph- thalmol. 2020;4103871. [Crossref]  [PubMed]  [PMC]
  4. Palkar AH, Khetan V. Polypoidal choroidal vasculopathy: An update on current management and review of literature. Tai- wan J Ophthalmol. 2019 Apr-Jun; 9(2): 72-92. [Crossref]  [PubMed]  [PMC]
  5. Sen P, Manayath G, Shroff D, Salloju V, Dhar P. Polypoidal Choroidal Vasculopathy: An Update on Diagnosis and Treat- ment. Clin Ophthalmol. 2023 Jan 5;17:53-70. [Crossref]  [PubMed]  [PMC]
  6. Kumar A, Kumawat D, Sundar MD, et al. Polypoidal cho- roidal vasculopathy: a comprehensive clinical update. Ther Adv Ophthalmol. 2019;11:2515841419831152. [Crossref]  [PubMed]  [PMC]
  7. Nakashizuka H, Mitsumata M, Okisaka S, Shimada H, Kawamura A, Mori R, Tong JP, Chan WM, Liu DT, Lai TY, Choy KW, Pang CP, et al. Aqueous humor levels of vascular endothelial growth factor and pigment epithelium-derived factor in polypoidal choroidal vasculopathy and choroidal neovascularization. Am J Ophthalmol 2006;141:456-62. [Crossref]  [PubMed]
  8. Lee WK, Baek J, Dansingani KK, et al. Choroidal morphol- ogy in eyes with polypoidal choroidal vasculopathy and nor- mal or subnormal choroidal thickness. Retina. 2016;36(suppl 1):S73-S82. [Crossref]  [PubMed]
  9. Qiu B, Zhang X, Li Z, et al. Characterization of choroidal morphology and vasculature in the phenotype of pachycho- roid diseases by swept-source OCT and OCTA. J Clin Med. 2022;11(11):3243. [Crossref]  [PubMed]  [PMC]
  10. Kishi S, Matsumoto H. A new insight into pachychoroid diseases: remodeling of choroidal vasculature. Graefes Arch Clin Exp Ophthalmol. 2022;16:1-3. [Crossref]
  11. Yannuzzi LA, Sorenson J, Spaide RF, et al. Idiopathic polyp- oidal choroidal vasculopathy (IPCV). Retina. 1990;10:1-8. [Crossref]  [PubMed]
  12. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 2016;36:499 516. [Crossref]  [PubMed]
  13. Hatamnejad A, Patil NS, Mihalache A, Popovic MM, Kertes PJ, Muni RH, Wong DT. Efficacy and safety of anti-vascu- lar endothelial growth agents for the treatment of polypoidal choroidal vasculopathy: A systematic review and me- ta-analysis. Surv Ophthalmol. 2023 Sep-Oct;68(5):920-928. [Crossref]  [PubMed]
  14. Koh A, Lee WK, Chen LJ, et al. EVEREST study: effica- cy and safety of verteporfin photodynamic therapy in com- bination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polyp- oidal choroidal vasculopathy. Retina. 2012;32:1453-1464. [Crossref]  [PubMed]
  15. Tan CS, Ngo WK, Chen JP, Tan NW, Lim TH, EVEREST Study Group. EVEREST study report 2: imaging and grad- ing protocol, and baseline characteristics of a randomized controlled trial of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99:624-628. [Crossref]  [PubMed]  [PMC]
  16. Cackett P, Wong D, and Yeo I. A classification system for polypoidal choroidal vasculopathy. Retina 2009; 29: 187-191. [Crossref]  [PubMed]
  17. Gomi F, Sawa M, Mitarai K, et al. Angiographic lesion of polypoidal choroidal vasculopathy on indocyanine green and fluorescein angiography. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1421-1427. [Crossref]  [PubMed]
  18. Tan CSH, Ngo WK, Lim LW, et al. A novel classification of the vascular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes. Br J Ophthalmol 2014; 98: 1528-1533. [Crossref]  [PubMed]
  19. Alshahrani ST, Al Shamsi HN, Kahtani ES, et al. Spec- tral-domain optical coherence tomography findings in pol- ypoidal choroidal vasculopathy suggest a type 1 neovascu- lar growth pattern. Clin Ophthalmol 2014; 8: 1689-1695. [Crossref]  [PubMed]  [PMC]
  20. Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of ret- inal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence to- mography. Invest Ophthalmol Vis Sci. 2011;52:5536-5540. [Crossref]  [PubMed]
  21. Lee JG, Rosen RB. Newest applications of en- hanced-depth imaging and swept-source optical coher- ence tomography facilitation detailed imaging of the choroid. Retin Physician. 2017;14:41-43. [Link]
  22. Cheung CM, Lai TY, Teo K, et al. Polypoidal choroidal vas- culopathy: consensus nomenclature and non-indocyanine green angiograph diagnostic criteria from the Asia-Pacif- ic Ocular Imaging Society PCV workgroup. Ophthalmol. 2021;128:443-452. [Crossref]  [PubMed]
  23. Yeung, Ling Kuo, Chien-Neng, Chao, An-Ning, Chen, Kuan-Jen, et al. Angiographic Subtypes of Polypoidal Cho- roidal Vasculopathy In Taiwan Retina 2018;38(2):p 263-271. [Crossref]  [PubMed]
  24. Cheung CMG, Yanagi Y, Mohla A, et al. Characteriza- tion and differentiation of polypoidal choroidal vasculop- athy using swept source optical coherence tomography angiography. Retina. 2017;37:1464-1474. [Crossref]  [PubMed]
  25. Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics of polypoidal cho- roidal vasculopathy. Br J Ophthalmol. 2016;100:1489-1493. [Crossref]  [PubMed]
  26. Tan ACS, Yanagi Y, Cheung GCM. Comparison of multicol- or imaging and color fundus photography in the detection of pathological findings in eyes with polypoidal choroidal vasculopathy. Retina. 2020;40:1512-1519. [Crossref]  [PubMed]
  27. Gemmy Cheung CM, Yeo I, Li X, Mathur R, Lee SY, Chan CM, et al. Argon laser with and without anti-vascular endo- thelial growth factor therapy for extrafoveal polypoidal cho- roidal vasculopathy. Am J Ophthalmol. 2013;155:295-3040. [Crossref]  [PubMed]
  28. Nishijima K, Takahashi M, Akita J, Katsuta H, Tanemura M, Aikawa H, et al. Laser photocoagulation of indocyanine green angiographically identified feeder vessels to idiopath- ic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2004;137:770-3. [Crossref]  [PubMed]
  29. Lee WK, Lee PY, Lee SK. Photodynamic therapy for pol- ypoidal choroidal vasculopathy: Vasoocclusive effect on the branching vascular network and origin of recurrence. Jpn J Ophthalmol 2008;52:108 15. [Crossref]  [PubMed]
  30. Schmidt-Erfurth U, Hasan T. Mechanisms of action of photo- dynamic therapy with verteporfin for the treatment of age-re- lated macular degeneration. Surv Ophthalmol 2000;45:195-214. [Crossref]  [PubMed]
  31. Ruamviboonsuk P, Lai TYY, Chen SJ, Yanagi Y, Wong TY, Chen Y, et al. Polypoidal Choroidal Vasculopathy: Up- dates on Risk Factors, Diagnosis, and Treatments. Asia Pac J Ophthalmol (Phila). 2023 Mar-Apr 01;12(2):184-195. [Crossref]  [PubMed]
  32. Oishi A, Miyamoto N, Mandai M, Honda S, Matsuoka T, Oh H, et al. LAPTOP study: A 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. 2014;121:1151-2. [Crossref]  [PubMed]
  33. Gomi F, Oshima Y, Mori R, Kano M, Saito M, Yamashita A, et al. Initial versus delayed photodynamic therapy in combi- nation with ranibizumab for treatment of polypoidal choroi- dal vasculopathy: The Fujisan Study. Retina 2015;35:1569 76. [Crossref]  [PubMed]
  34. Lee WK, Kim KS, Kim W, Lee SB, Jeon S. Responses to photodynamic therapy in patients with polypoidal choroi- dal vasculopathy consisting of polyps resembling grape clusters. Am J Ophthalmol. 2012 Aug;154(2):355-365.e1. [Crossref]  [PubMed]
  35. Akaza E, Yuzawa M, Mori R. Three-year follow-up results of photodynamic therapy for polypoidal choroidal vasculopathy. Jpn J Ophthalmol 2011;55:39-44. [Crossref]  [PubMed]
  36. Yamashita A, Shiraga F, Shiragami C, Shirakata Y, Fujiwara A. Two-year results of reduced-fluence photodynamic thera- py for polypoidal choroidal vasculopathy. Am J Ophthalmol 2013;155:96-1020. [Crossref]  [PubMed]
  37. Ho CPS, Lai TYY. Current management strategy of polypoidal choroidal vasculopathy. Ind J Ophthalmol. 2018;66:1727-1735. [Crossref]  [PubMed]  [PMC]
  38. Chhablani JK, Narula R, Narayanan R. Intravitreal beva- cizumab monotherapy for treatment naïve polypoidal cho- roidal vasculopathy. Indian J Ophthalmol 2013;61:136-8. [Crossref]  [PubMed]  [PMC]
  39. Kokame GT. Prospective evaluation of subretinal vessel lo- cation in polypoidal choroidal vasculopathy (PCV) and re- sponse of hemorrhagic and exudative PCV to high-dose anti- angiogenic therapy (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:74-93 [PMC]
  40. Lim TH, Lai TY, Takahashi K, et al. Comparison of ranibi- zumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy: the EVEREST II ran- domized clinical trial. JAMA Ophthalmol. 2020;138:935- 942. [Crossref]  [PubMed]  [PMC]
  41. Saito M, Kano M, Itagaki K, Ise S, Imaizumi K, Sekiryu T, et al. Subfoveal choroidal thickness in polypoidal choroidal vasculopathy after switching to intravitreal aflibercept injec- tion. Jpn J Ophthalmol 2016;60:35-41. [Crossref]  [PubMed]
  42. Lee WK, Iida T, Ogura Y, et al. Efficacy and safety of in- travitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET study: a randomized clinical trial. JAMA Ophthalmol. 2018;136:786-793. [Crossref]  [PubMed]  [PMC]
  43. Matsumoto H, Morimoto M, Mimura K, Ito A, Akiyama H. Treat-and-extend regimen with aflibercept for neovascular age-related macular degeneration: efficacy and macular at- rophy development. Ophthalmol Retina. 2018;2:462-468 [Crossref]  [PubMed]
  44. Nguyen QD, Das A, Do DV, et al. Brolucizumab: evolution through preclinical and clinical studies and the implications for the management of neovascular age-related macular de- generation. Ophthalmol. 2020;127:963-976. [Crossref]  [PubMed]
  45. Dugel PU, Koh A, Ogura Y, et al. Hawk and Harrier: phase 3, multicenter, randomized, double-masked trials of Brolucizumab for neovascular age-related macular degen- eration. Ophthalmol. 2020;127:72-84. [Crossref]  [PubMed]
  46. Ogura Y, Jaffe GJ, Cheung CM, et al. Efficacy and safety of brolucizumab versus aflibercept in eyes with polypoidal choroidal vasculopathy in Japanese participants of HAWK. Br J Ophthalmol. 2021;2021:319090. [Crossref]
  47. FDA approves faricimab to treat wet AMD and DME. Avail- able from: Accessed December 16, 2022 [Link]
  48. Campochiaro PA, Marcus DM, Awh CC, et al. The port de- livery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 ladder clinical trial. Ophthalmol. 2019;126:1141-1154. [Crossref]  [PubMed]
  49. Jackson TL, Bunce C, Desai R, et al. Vitrectomy, subretinal tissue plasminogen activator, and intravitreal gas for submac- ular hemorrhage secondary to exudative age-related macular degeneration (TIGER): study protocol for a phase 3 pan-Eu- ropean, two-group, non-commercial, active-control, observ- er-masked, superiority, randomized controlled surgical trial. Trials. 2022;23:1-23. [Crossref]  [PubMed]  [PMC]