CURRENT INVESTIGATIONS IN DRY AGE RELATED MACULAR DEGENERATION

Mustafa Salih Karatepe

Cumhuriyet University,Faculty of Medicine, Department of Ophthalmology, Sivas, Türkiye

Karatepe MS. Current Investigations in Dry Age-Related Macular Degeneration. Çıtırık M, Şekeryapan Gediz B, eds. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.97-109.

ABSTRACT

Age-related macular degeneration (AMD) is a multifactorial, degenerative disease associated with progressive vision loss. AMD is the leading cause of irreversible blindness in individuals over the age of 55 in developed countries. Dry AMD accounts for 85-90% of all cases. Geographic atrophy (GA), a condition defined by the presence of sharply circumscribed atrophic lesions of the outer retina, is estimated to affect approximately 5 million people worldwide, and its prevalence increases with age. Advanced AMD leads to rapid and progressive loss of central vision and contrast sensitivity, significantly impacting quality of life by limiting the ability to perform daily tasks such as reading, driving, and facial recognition. Patients with AMD report lower activity levels, higher incidences of depression, and higher stress compared to their peers without AMD. The etiology of AMD is not fully known, but oxidative stress, lipid metabolism, and retinal pigment epithelium (RPE) dysfunction due to inflammation and complement activation are believed to play important roles in the disease. Current and completed studies investigating treatments for dry AMD show promise in slowing the progression of dry AMD, decreasing the rate of GA lesion growth, and potentially restoring RPE cells. Some medications approved by the Food and Drug Administration (FDA), such as Syfovre® (pegcetacoplan) and Izervay® (avacincaptad pegol), have pioneered the development of interventions that can slow or stop the progression of GA, but there is still limited evidence regarding their ability to preserve vision. This section reviews recently approved treatments and current clinical trials to treat dry AMD.

Keywords: Age-related macular degeneration; Geographic atrophy; Retinal pigment epithelium; Complement activation; Pegcetacoplan

Referanslar

  1. Boopathiraj N, Wagner IV, Dorairaj SK, Miller DD, Stewart MW. Recent Updates on the Diagnosis and Management of Age-Related Macular Degeneration. Mayo Clinic proceedings Innovations, quality & outcomes. 2024;8(4):364-374. [Crossref]  [PubMed]  [PMC]
  2. Country MW. Retinal metabolism: A comparative look at energetics in the retina. Brain research. 2017;1672:50-57. [Crossref]  [PubMed]
  3. Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. European journal of pharmacology. 2016;787:94-104. [Crossref]  [PubMed]  [PMC]
  4. Park YG, Park YS, Kim IB. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int J Mol Sci. 2021;22(13):6851. [Crossref]  [PubMed]  [PMC]
  5. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Archives of ophthalmology (Chicago, Ill : 1960). 2005;123(11):1484-1498. [Crossref]  [PubMed]  [PMC]
  6. Tikellis G, Robman LD, Dimitrov P, Nicolas C, McCarty CA, Guymer RH. Characteristics of progression of early age-related macular degeneration: the cardiovascular health and age-related maculopathy study. Eye (London, England). 2007;21(2):169-176. [Crossref]  [PubMed]
  7. Joachim N, Mitchell P, Kifley A, Rochtchina E, Hong T, Wang JJ. Incidence and progression of geographic atrophy: observations from a population-based cohort. Ophthalmology. 2013;120(10):2042-50. [Crossref]  [PubMed]
  8. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. Jama. 2013;309(19):2005-2015. [Crossref]  [PubMed]
  9. Kolev M, Le Friec G, Kemper C. Complement--tapping into new sites and effector systems. Nature reviews Immunology. 2014;14(12):811-820. [Crossref]  [PubMed]
  10. Holers VM. Complement and its receptors: new insights into human disease. Annual review of immunology. 2014;32:433-459. [Crossref]  [PubMed]
  11. Desai D, Dugel PU. Complement cascade inhibition in geographic atrophy: a review. Eye (London, England). 2022;36(2):294-302. [Crossref]  [PubMed]  [PMC]
  12. McHarg S, Clark SJ, Day AJ, Bishop PN. Age-related macular degeneration and the role of the complement system. Molecular immunology. 2015;67(1):43-50. [Crossref]  [PubMed]
  13. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science (New York, NY). 2005;308(5720):385-389. [Crossref]  [PubMed]  [PMC]
  14. Brandstetter C, Holz FG, Krohne TU. Complement Component C5a Primes Retinal Pigment Epithelial Cells for Inflammasome Activation by Lipofuscin-mediated Photooxidative Damage. J Biol Chem. 2015;290(52):31189-31198. [Crossref]  [PubMed]  [PMC]
  15. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss SE. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. Journal of immunology (Baltimore, Md : 1950). 2015;195(7):3382-3389. [Crossref]  [PubMed]  [PMC]
  16. Schramm EC, Clark SJ, Triebwasser MP, Raychaudhuri S, Seddon J, Atkinson JP. Genetic variants in the complement system predisposing to age-related macular degeneration: a review. Molecular immunology. 2014;61(2):118-125. [Crossref]  [PubMed]  [PMC]
  17. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134-143. [Crossref]  [PubMed]  [PMC]
  18. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. The New England journal of medicine. 2007;357(6):553-561. [Crossref]  [PubMed]
  19. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. American journal of ophthalmology. 2002;134(3):411-431. [Crossref]  [PubMed]
  20. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, et al. The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Progress in retinal and eye research. 2010;29(2):95-112. [Crossref]  [PubMed]  [PMC]
  21. Scholl HP, Charbel Issa P, Walier M, Janzer S, Pollok-Kopp B, Börncke F, et al. Systemic complement activation in age-related macular degeneration. PloS one. 2008;3(7):e2593. [Crossref]  [PubMed]  [PMC]
  22. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, et al. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. The Journal of biological chemistry. 2003;278(43):42027-42035. [Crossref]  [PubMed]
  23. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nature medicine. 2008;14(2):194-198. [Crossref]  [PubMed]  [PMC]
  24. Joseph K, Kulik L, Coughlin B, Kunchithapautham K, Bandyopadhyay M, Thiel S, et al. Oxidative stress sensitizes retinal pigmented epithelial (RPE) cells to complement-mediated injury in a natural antibody-, lectin pathway-, and phospholipid epitope-dependent manner. The Journal of biological chemistry. 2013;288(18):12753-12765. [Crossref]  [PubMed]  [PMC]
  25. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS, et al. Complement C3 Inhibitor Pegcetacoplan for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Phase 2 Trial. Ophthalmology. 2020;127(2):186-195. [Crossref]  [PubMed]
  26. Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, Boyer D, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet (London, England). 2023;402(10411):1434-1448. [Crossref]  [PubMed]
  27. Jaffe GJ, Westby K, Csaky KG, Monés J, Pearlman JA, Patel SS, et al. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology. 2021;128(4):576-586. [Crossref]  [PubMed]
  28. Khanani AM, Patel SS, Staurenghi G, Tadayoni R, Danzig CJ, Eichenbaum DA, et al. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase3 trial. Lancet (London, England). 2023;402(10411):1449-1458. [Crossref]  [PubMed]
  29. Grover A, Sankaranarayanan S, Mathur V, Suri P, Qiu H, Andrews-Zwilling Y, et al. Pharmacokinetic and Target Engagement Measures of ANX007, an Anti-C1q Antibody Fragment, Following Intravitreal Administration in Nonhuman Primates. Invest Ophthalmol Vis Sci. 2023;64(2):3. [Crossref]  [PubMed]  [PMC]
  30. Jiao H, Rutar M, Fernando N, Yednock T, Sankaranarayanan S, Aggio-Bruce R, et al. Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration. Mol Neurodegener. 2018;13(1):45. [Crossref]  [PubMed]  [PMC]
  31. A Phase 2, Multicenter, Randomized, Parallel-Group, Double-Masked, 4-Arm, Sham-Controlled Study of the Efficacy, Safety, and Tolerability of ANX007 Administered by Intravitreal Injection in Patients With Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration (AMD) - The ARCHER Study. Annexon, Inc. [cited 2025 Jan 15]; Available from: [Link]
  32. Rajanala K, Dotiwala F, Upadhyay A. Geographic atrophy: pathophysiology and current therapeutic strategies. Front Ophthalmol (Lausanne). 2023;3:1327883. [Crossref]  [PubMed]  [PMC]
  33. Dreismann AK, Hallam TM, Tam LC, Nguyen CV, Hughes JP, Ellis S, et al. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunol Rev. 2023;313(1):402-419. [Crossref]  [PubMed]  [PMC]
  34. A Phase 2, Randomized Placebo-Controlled, Double-Masked Study to Assess Safety and Efficacy of Multiple Doses of IONIS-FB-LRx, an Antisense Inhibitor of Complement Factor B, in Patients With Geographic Atrophy Secondary to Age-Related Macular Degeneration (AMD). Ionis Pharmaceuticals, Inc. [Link]
  35. A Randomized, Participant and Investigator Masked, Placebo-controlled, Multicenter, Proof-of-concept Study to Assess the Safety and Efficacy of LNP023 (Iptacopan) in Patients With Early and Intermediate Age-related Macular Degeneration. Novartis Pharmaceuticals. [cited 2025 Jan 15]; Available from: [Link]
  36. Boyer DD, Ko YP, Podos SD, Cartwright ME, Gao X, Wiles JA, et al. Danicopan, an Oral Complement Factor D Inhibitor, Exhibits High and Sustained Exposure in Ocular Tissues in Preclinical Studies. Transl Vis Sci Technol. 2022;11(10):37. [Crossref]  [PubMed]  [PMC]
  37. A Phase 2, Double-Masked, Placebo-Controlled, Dose Range Finding Study of Danicopan (ALXN2040) in Patients With Geographic Atrophy (GA) Secondary to Age-RelatedMacular Degeneration (AMD). Alexion Pharmaceuticals, Inc. [cited 2025 Jan 15]; Available from: [Link]
  38. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering. 2012;40(2):516-533. [Crossref]  [PubMed]  [PMC]
  39. Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. PM & R : the journal of injury, function, and rehabilitation. 2010;2(12 Suppl 2):S292-305. [Crossref]  [PubMed]  [PMC]
  40. Rojas JC, Gonzalez-Lima F. Low-level light therapy of the eye and brain. Eye and brain. 2011;3:49-67. [Crossref]  [PubMed]  [PMC]
  41. Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers in surgery and medicine. 1998;22(4):212-218. [Crossref]
  42. Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. Journal of photochemistry and photobiology B, Biology. 1995;27(3):219- 223. [Crossref]  [PubMed]
  43. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and laser surgery. 2005;23(4):355-361. [Crossref]  [PubMed]
  44. Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. The Journal of biological chemistry. 2005;280(6):4761-4771. [Crossref]  [PubMed]
  45. Oron U, Ilic S, De Taboada L, Streeter J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomedicine and laser surgery. 2007;25(3):180-182. [Crossref]  [PubMed]
  46. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. Journal of photochemistry and photobiology B, Biology. 2009;95(2):89-92. [Crossref]  [PubMed]
  47. Mochizuki-Oda N, Kataoka Y, Cui Y, Yamada H, Heya M, Awazu K. Effects of near-infra-red laser irradiation on adenosine triphosphate and adenosine diphosphate contents of rat brain tissue. Neuroscience letters. 2002;323(3):207-210. [Crossref]  [PubMed]
  48. Markowitz SN, Devenyi RG, Munk MR, Croissant CL, Tedford SE, Rückert R, et al. A Double-Masked, Randomized, Sham-Controlled, Single-Center Study with Photobiomodulation for the Treatment of Dry Age-Related Macular Degeneration. Retina (Philadelphia, Pa). 2020;40(8):1471- 1482. [Crossref]  [PubMed]  [PMC]
  49. Burton B, Parodi MB, Jürgens I, Zanlonghi X, Hornan D, Roider J, et al. LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration. Ophthalmol Ther. 2023;12(2):953-968. [Crossref]  [PubMed]  [PMC]
  50. Boyer D, Hu A, Warrow D, Xavier S, Gonzalez V, Lad E, et al. LIGHTSITE III: 13-Month Efficacy and Safety Evaluation of Multiwavelength Photobiomodulation in Nonexudative (Dry) Age-Related Macular Degeneration Using the Lumithera Valeda Light Delivery System. Retina. 2024;44(3):487-497. [Crossref]  [PMC]
  51. Guymer RH, Wu Z, Hodgson LAB, Caruso E, Brassington KH, Tindill N, et al. Subthreshold Nanosecond Laser Intervention in Age-Related Macular Degeneration: The LEAD Randomized Controlled Clinical Trial. Ophthalmology. 2019;126(6):829-838. [Crossref]  [PubMed]
  52. Querques G, Cicinelli MV, Rabiolo A, de Vitis L, Sacconi R, Querques L, et al. Laser photocoagulation as treatment of non-exudative age-related macular degeneration: stateof-the-art and future perspectives. Graefes Arch Clin Exp Ophthalmol. 2018;256(1):1-9. [Crossref]  [PubMed]
  53. Virgili G, Michelessi M, Parodi MB, Bacherini D, Evans JR. Laser treatment of drusen to prevent progression to advanced age-related macular degeneration. Cochrane Database Syst Rev. 2015;2015(10):CD006537. [Crossref]
  54. Subthreshold Laser Treatment in Intermediate Age-related Macular Degeneration With Nascent Geographic Atrophy Study. Center for Eye Research Australia. [cited 2025 Jan 15]; Available from: [Link]
  55. Subthreshold Laser Treatment for Reticular Pseudodrusen Secondary to Age-related Macular Degeneration. Ospedale San Raffaele. [cited 2025 Jan 15]; Available from: [Link]
  56. Cashman SM, Ramo K, Kumar-Singh R. A non membrane-targeted human soluble CD59 attenuates choroidal neovascularization in a model of age related macular degeneration. PloS one. 2011;6(4):e19078. [Link] https://doi.org/10.1371/journal.pone.0019078 [Crossref]  [PubMed]  [PMC]
  57. Nishiguchi KM, Yasuma TR, Tomida D, Nakamura M, Ishikawa K, Kikuchi M, et al. C9-R95X polymorphism in patients with neovascular age-related macular degeneration. Investigative ophthalmology & visual science.2012;53(1):508-512. [Crossref]  [PubMed]
  58. Couves EC, Gardner S, Voisin TB, Bickel JK, Stansfeld PJ, Tate EW, et al. Structural basis for membrane attack complex inhibition by CD59. Nat Commun. 2023;14(1):890. [Crossref]  [PubMed]  [PMC]
  59. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT. Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. The Journal of pathology. 2013;229(5):729-742. [Crossref]  [PubMed]  [PMC]
  60. A Phase 1, Open-Label, Multi-Center, Dose-Escalating, Safety and Tolerability Study of a Single Intravitreal Injection of AAVCAGsCD59 in Patients With Advanced Non-Exudative (Dry) Age-Related Macular Degeneration With Geographic Atrophy. Janssen Research & Development, LLC. [cited 2025 Jan 15]; Available from: [Link]
  61. Dou Y, Lin Y, Wang TY, Wang XY, Jia YL, Zhao CP. The CAG promoter maintains high-level transgene expression in HEK293 cells. FEBS Open Bio. 2021;11(1):95-104. [Crossref]  [PubMed]  [PMC]
  62. Heier JS, Cohen MN, Chao DL, Pepio A, Shiraga Y, Capuano G, et al. Phase 1 Study of JNJ-81201887 Gene Therapy in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology. 2024;131(12):1377-1388. [Crossref]  [PubMed]
  63. Jamil MU, Waheed NK. Gene therapy for geographic atrophy in age-related macular degeneration: current insights. Eye (Lond). 2025;39(2):274-283. [Crossref]  [PubMed]
  64. A Phase 2b, Randomized, Double-masked, Multicenter, Dose-ranging, Sham-controlled Clinical Trial to Evaluate Intravitreal JNJ-81201887 (AAVCAGsCD59) Compared to Sham Procedure for the Treatment of Geographic Atrophy (GA) Secondary to Age-related Macular Degeneration (AMD). Janssen Research & Development, LLC. [cited 2025 Jan 15]; Available from: [Link]
  65. Dehghan S, Mirshahi R, Shoae-Hassani A, Naseripour M. Human-induced pluripotent stem cells-derived retinal pigmented epithelium, a new horizon for cells-based therapies for age-related macular degeneration. Stem cell research & therapy. 2022;13(1):217. [Crossref]  [PubMed]  [PMC]
  66. Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, et al. Retinal stem cell transplantation: Balancing safety and potential. Progress in retinal and eye research. 2020;75:100779. [Crossref]  [PubMed]  [PMC]
  67. Kashani AH, Lebkowski JS, Hinton DR, Zhu D, Faynus MA, Chen S, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem cell reports. 2022;17(3):448-458. [Crossref]  [PubMed]  [PMC]
  68. Humayun MS, Clegg DO, Dayan MS, Kashani AH, Rahhal FM, Avery RL, et al. Long-term Follow-up of a Phase 1/2a Clinical Trial of a Stem Cell-Derived Bioengineered Retinal Pigment Epithelium Implant for Geographic Atrophy. Ophthalmology. 2024;131(6):682-691. [Crossref]  [PubMed]
  69. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509-516. [Crossref]  [PubMed]
  70. A Phase1/2a, Open-Label Study to Evaluate the Safety and Tolerability of RPE Stem Cell-derived RPE (RPESC-RPE) Transplantation as Therapy for Dry Age-related Macular Degeneration (AMD). Luxa Biotechnology, LLC. [cited 2025 Jan 15]; Available from: [Link]
  71. Phase I/IIa Dose Escalation Safety and Efficacy Study of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium Cells Transplanted Subretinally in Patients With Advanced Dry-Form Age-Related Macular Degeneration (Geographic Atrophy). Hoffmann-La Roche. [cited 2025 Jan 15]; Available from: [Link]
  72. Banin E, Barak A, Boyer DS, Ehrlich R, Ho A, Jaouni T, et al. Exploratory optical coherence tomography (OCT) analysis in patients with geographic atrophy (GA) treated by OpRegen: results from the phase 1/2a trial. Investigative ophthalmology & visual science. 2023;64(8):2826-2826. [Link]
  73. A Phase IIa, Multicenter, Open-Label, Single-Arm Study To Optimize Subretinal Surgical Delivery And To Evaluate Safety And Activity Of Opregen In Patients With Geographic Atrophy Secondary to Age-Related Macular Degeneration. Genentech, Inc. [cited 2025 Jan 15]; Available from: [Link]
  74. A Phase 1b, Multicenter, Dose Escalation, Evaluation of Safety and Tolerability of ASP7317 for Geographic Atrophy Secondary to Age-related Macular Degeneration. Astellas Institute for Regenerative Medicine. [cited 2025 Jan 15]; Available from: [Link]
  75. Ueda K, Zhao J, Kim HJ, Sparrow JR. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Proc Natl Acad Sci U S A. 2016;113(25):6904-6909. [Crossref]  [PubMed]  [PMC]
  76. Yoon KD, Yamamoto K, Ueda K, Zhou J, Sparrow JR. A novel source of methylglyoxal and glyoxal in retina: implications for age-related macular degeneration. PLoS One. 2012;7(7):e41309. [Crossref]  [PubMed]  [PMC]
  77. Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR. Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci U S A. 2010;107(16):7275-7280. [Crossref]  [PubMed]  [PMC]
  78. Murdaugh LS, Mandal S, Dill AE, Dillon J, Simon JD, Gaillard ER. Compositional studies of human RPE lipofuscin: mechanisms of molecular modifications. J Mass Spectrom. 2011;46(1):90-95. [Crossref]  [PubMed]
  79. Murdaugh LS, Avalle LB, Mandal S, Dill AE, Dillon J, Simon JD, et al. Compositional studies of human RPE lipofuscin. J Mass Spectrom. 2010;45(10):1139-1147. [Crossref]  [PubMed]
  80. Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol. 2021;10(14):8. [Crossref]  [PubMed]  [PMC]
  81. Richard AJ, Duker JS, Reichel E. Geographic atrophy: where we are now and where we are going. Curr Opin Ophthalmol. 2021;32(3):247-252. [Crossref]  [PubMed]
  82. Berni R, Formelli F. In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences. FEBS Lett. 1992;308(1):43-45. [Crossref]  [PubMed]
  83. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina. 2013;33(3):498-507. [Crossref]  [PubMed]
  84. Kaufman Y, Ma L, Washington I. Deuterium enrichmentof vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem. 2011;286(10):7958-7965. [Crossref]  [PubMed]  [PMC]
  85. A Phase 2/3 Multicenter, Randomized, Double-masked, Parallel-group, Placebo-controlled Study to Investigate the Safety, Pharmacokinetics, Tolerability, and Efficacy of ALK-001 in Geographic Atrophy Secondary to Age-related Macular Degeneration. Alkeus Pharmaceuticals, Inc. [cited 2025 Jan 15]; Available from: [Link]
  86. Palanker D, Le Mer Y, Mohand-Said S, Sahel JA. Simultaneous perception of prosthetic and natural vision in AMD patients. Nat Commun. 2022;13(1):513. [Crossref]  [PubMed]  [PMC]
  87. A Prospective, Multicenter Clinical Study of the Implantable Miniature Telescope, Model SING in Patients with Central Vision Impairment Associated with End-stage Age-related Macular Degeneration (AMD). VisionCare, Inc. [cited 2025 Jan 15]; Available from: [Link]
  88. Kuppermann BD, Patel SS, Boyer DS, Augustin AJ, Freeman WR, Kerr KJ, et al. PHASE 2 Study Of the Safety And Efficacy Of Brimonidine Drug Delivery System (Brimo Dds) Generation 1 in Patients with Geographic Atrophy Secondary to Age-Related Macular Degeneration. Retina. 2021;41(1):144-155. [Crossref]  [PubMed]
  89. Waugh N, Loveman E, Colquitt J, Royle P, Yeong JL, Hoad G, et al. Treatments for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol Assess. 2018;22(27):1-168. [Crossref]  [PubMed]  [PMC]
  90. Liu J, Tong K, Lin Y, Lee VWH, So KF, Shih KC, et al. Effectiveness of Microcurrent Stimulation in Preserving Retinal Function of Blind Leading Retinal Degeneration and Optic Neuropathy: A Systematic Review. Neuromodulation. 2021;24(6):992-1002. [Crossref]  [PubMed]
  91. Enayati S, Chang K, Achour H, Cho KS, Xu F, Guo S, et al. Electrical Stimulation Induces Retinal Müller Cell Proliferation and Their Progenitor Cell Potential. Cells. 2020;9(3):781. [Crossref]  [PubMed]  [PMC]
  92. Parkinson KM, Sayre EC, Tobe SW. Evaluation of visual acuity in dry AMD patients after microcurrent electrical stimulation. Int J Retina Vitreous. 2023;9(1):36. [Crossref]  [PubMed]  [PMC]
  93. Effects of Antiplatelet and Antioxidant Agents on Drusen Progression: A Pilot, Prospective Cohort Study. Navamindradhiraj University. [cited 2025 Jan 15]; Available from: [Link]
  94. A Phase 1b Multicenter, Randomized, Controlled, Multidose Study of the Safety and Tolerability of ONL1204 Ophthalmic Solution in Patients With Geographic Atrophy (GA) Associated With Age-related Macular Degeneration (AMD). ONL Therapeutics. [cited 2025 Jan 15]; Available from: [Link]
  95. A Phase 2 Multicenter, Randomized, Double-masked, Sham-controlled, Reference-arm Study to Evaluate Efficacy and Safety of ONL1204 in Patients With Geographic Atrophy (GA) Associated With Age-related Macular Degeneration (AMD). ONL Therapeutics. [cited 2025 Jan 15]; Available from: [Link]
  96. Rasheed A, Zaheer AB, Munawwar A, Sarfraz Z, Sarfraz A, Robles-Velasco K, et al. The Allosteric Antagonist of the Sigma-2 Receptors-Elayta (CT1812) as a Therapeutic Candidate for Mild to Moderate Alzheimer's Disease: A Scoping Systematic Review. Life (Basel). 2022;13(1):1. [Crossref]  [PubMed]  [PMC]
  97. Wheeler S, Mahmoudzadeh R, Randolph J. Treatment for dry age-related macular degeneration: where we stand in 2024. Curr Opin Ophthalmol. 2024;35(5):359-364. [Crossref]  [PubMed]
  98. A Randomized, Double-Masked, Placebo-Controlled, Parallel-Group, Phase 2 Study to Evaluate the Efficacy and Safety of Oral CT1812 in Participants with Geographic Atrophy (GA) Secondary to Dry Age-Related Macular Degeneration (AMD). Cognition Therapeutics. [cited 2025 Jan 15]; Available from: [Link]
  99. Yang P, Shao Z, Besley NA, Neal SE, Buehne KL, Park J, et al. Risuteganib Protects against Hydroquinone-induced Injury in Human RPE Cells. Invest Ophthalmol Vis Sci. 2020;61(10):35. [Crossref]  [PubMed]  [PMC]
  100. Boyer DS, Gonzalez VH, Kunimoto DY, Maturi RK, Roe RH, Singer MA, et al. Safety and Efficacy of Intravitreal Risuteganib for Non-Exudative AMD: A Multicenter, Phase 2a, Randomized, Clinical Trial. Ophthalmic Surg Lasers Imaging Retina. 2021;52(6):327-335. [Crossref]  [PubMed]
  101. A Single and Multiple Dose Study to Evaluate Safety, Pharmacokinetics, and Treatment Effect of Intravitreal AVD104 in Participants With Geographic Atrophy Secondary to Age-related Macular Degeneration. Aviceda Therapeutics, Inc. [cited 2025 Jan 15]; Available from: [Link]