Current Treatments in Hereditary Retinal Dystrophies

Dr. Atike Burçin Tefon Arıbaş, FEBO, FICO

Ankara Bilkent City Hospital, Department of Ophthalmology, Ankara, Türkiye

ABSTRACT

Hereditary retinal dystrophies (HRDs) represent a spectrum of genetic disorders with significant genetic and clinical heterogeneity. Common presentations of these diseases are night or color blindness, tunnel vision, and subsequent progression to complete blindness. The inheritance patterns and expressivity show a hetero- geneous course even among the affected individuals in the same family. Molecular genetic testing is crucial for accurate diagnosis, predicting the prognosis of the disease and the treatment prospects of targeted ther- apeutics. Recently, significant advancements have been made in understanding the genetic pathogenesis of HRDs. As a result of this, developments in drug and gene therapies in the field of HRDs are encouraging and promising. The genetic trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for HRDs. Another important point in the treatment of these diseases is access to low vision aids and assistive technologies, educational and work-related support and counselling.

Keywords: Hereditary retinal dystrophy; Stargardt disease; Retinitis pigmentosa; Retinal cone dystophy; Leber congenital amaurosis; Choroideremia; Achromatopsia; Retinoschisis

Referanslar

  1. Georgiou M, Fujinami K, Michaelides M. Inherit- ed retinal diseases: Therapeutics, clinical trials and end points-A review. Clinical & experimental ophthalmology. 2021;49(3):270-288. [Crossref]  [PubMed]
  2. Heath Jeffery RC, Mukhtar SA, McAllister IL, Morgan WH, Mackey DA, Chen FK. Inherited retinal diseases are the most common cause of blindness in the working-age popula- tion in Australia. Ophthalmic genetics. 2021;42(4):431-439. [Crossref]  [PubMed]  [PMC]
  3. Murro V, Banfi S, Testa F, Iarossi G, Falsini B, Sodi A, et al. A multidisciplinary approach to inherited retinal dystrophies from diagnosis to initial care: a narrative review with inputs from clinical practice. Orphanet journal of rare diseases. 2023;18(1):223. [Crossref]  [PubMed]  [PMC]
  4. Mahalingam M, Gopalakrishnan S, Parasuraman D, Jayaraj PJ, Raman R. Prescribing patterns of low vision devices in patients with cone-related dystrophies. Indian journal of ophthalmology. 2023;71(1):195-201. [Crossref]  [PubMed]  [PMC]
  5. Lu LJ, Liu J, Adelman RA. Novel therapeutics for Stargardt disease. Graefe's archive for clinical and experimental oph- thalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2017;255(6):1057-1062. [Crossref]  [PubMed]
  6. Casalino G, Khan KN, Armengol M, Wright G, Pontikos N, Georgiou M, et al. Autosomal Recessive Bestrophi- nopathy: Clinical Features, Natural History, and Genetic Findings in Preparation for Clinical Trials. Ophthalmology. 2021;128(5):706-718. [Crossref]  [PubMed]  [PMC]
  7. Kaufman Y, Ma L, Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. The Journal of biological chemistry. 2011;286(10):7958-7965. [Crossref]  [PubMed]  [PMC]
  8. Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. European journal of medicinal chemistry. 2021;226:113856. [Crossref]  [PubMed]
  9. Blum E, Zhang J, Zaluski J, Einstein DE, Korshin EE, Kubas A, et al. Rational Alteration of Pharmacokinet- ics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. Journal of medicinal chemistry. 2021;64(12):8287-8302. [Crossref]  [PubMed]  [PMC]
  10. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived reti- nal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet (London, En- gland). 2015;385(9967):509-516. [Crossref]  [PubMed]
  11. Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Mac- ular Degeneration. Ophthalmology. 2018;125(11):1765- 1775. [Crossref]  [PubMed]  [PMC]
  12. Li SY, Liu Y, Wang L, Wang F, Zhao TT, Li QY, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt mac- ular degeneration: 5-years' follow-up. Cell proliferation. 2021;54(9):e13100. [Crossref]  [PubMed]  [PMC]
  13. Hensman J, Hahn LC, van Schooneveld MJ, Diederen RMH, Ten Brink JB, Florijn RJ, et al. Efficacy of Carbon- ic Anhydrase Inhibitors on Cystoid Fluid Collections and Visual Acuity in Patients with X-Linked Retinoschisis. Ophthalmology Retina. 2024;8(6):600-606. [Crossref]  [PubMed]  [PMC]
  14. Schmitt MA, Wang K, DeBenedictis MJ, Traboulsi EI. Topical Carbonic Anhydrase Inhibitors In The Long-Term Treatment Of Juvenile X-Linked Retinoschisis. Retina (Philadelphia, Pa). 2022;42(11):2176-2183. [Crossref]  [PubMed]
  15. Sun Y, Xiao D, Li Z, Xu D, Zhang D, An Y, et al. Intravit- real injection of new adeno-associated viral vector: Enhancing retinoschisin 1 gene transduction in a mouse model of X-linked retinoschisis. Biochemistry and biophysics reports. 2024;37:101646. [Crossref]  [PubMed]  [PMC]
  16. Vijayasarathy C, Sardar Pasha SPB, Sieving PA. Of men and mice: Human X-linked retinoschisis and fidelity in mouse modeling. Progress in retinal and eye research. 2022;87:100999. [Crossref]  [PubMed]
  17. Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH. Con- trolling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Methods in molecular biology (Clifton, NJ). 2016;1382:133-149. [Crossref]  [PubMed]  [PMC]
  18. Guziewicz KE, Zangerl B, Komáromy AM, Iwabe S, Chio- do VA, Boye SL, et al. Recombinant AAV-mediated BEST1 transfer to the retinal pigment epithelium: analysis of sero- type-dependent retinal effects. PloS one. 2013;8(10):e75666. [Crossref]  [PubMed]  [PMC]
  19. Guziewicz KE, Cideciyan AV, Beltran WA, Komáromy AM, Dufour VL, Swider M, et al. BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light ex- posure. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(12):E2839-e2848. [Crossref]  [PubMed]  [PMC]
  20. Komáromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chi- odo VA, Kaya A, et al. Gene therapy rescues cone function in congenital achromatopsia. Human molecular genetics. 2010;19(13):2581-2593. [Crossref]  [PubMed]  [PMC]
  21. Komáromy AM, Rowlan JS, Corr AT, Reinstein SL, Boye SL, Cooper AE, et al. Transient photoreceptor deconstruc- tion by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. Molecular ther- apy : the journal of the American Society of Gene Therapy. 2013;21(6):1131-1141. [Crossref]  [PubMed]  [PMC]
  22. Zein WM, Jeffrey BG, Wiley HE, Turriff AE, Tumminia SJ, Tao W, et al. CNGB3-achromatopsia clinical trial with CNTF: diminished rod pathway responses with no evidence of improvement in cone function. Investigative ophthalmol- ogy & visual science. 2014;55(10):6301-6308. [Crossref]  [PubMed]  [PMC]
  23. Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoor- thy V, Koch S, Fischer MD, et al. Restoration of cone vi- sion in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Molecular therapy: the journal of the American Society of Gene Therapy. 2010;18(12):2057-2063. [Crossref]  [PubMed]  [PMC]
  24. Zhang Y, Wang S, Xu M, Pang J, Yuan Z, Zhao C. AAV-me- diated human CNGB3 restores cone function in an all- cone mouse model of CNGB3 achromatopsia. Journal of biomedical research. 2019;34(2):114-121. [Crossref]  [PubMed]  [PMC]
  25. Gill JS, Georgiou M, Kalitzeos A, Moore AT, Michaelides M. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. The British journal of ophthalmology. 2019;103(5):711-720. [Crossref]  [PubMed]  [PMC]
  26. McCullough KT, Boye SL, Fajardo D, Calabro K, Peterson JJ, Strang CE, et al. Somatic Gene Editing of GUCY2D by AAV-CRISPR/Cas9 Alters Retinal Structure and Function in Mouse and Macaque. Human gene therapy. 2019;30(5):571-589. [Crossref]  [PubMed]  [PMC]
  27. Mata NL, Weng J, Travis GH. Biosynthesis of a major lipo- fuscin fluorophore in mice and humans with ABCR-mediat- ed retinal and macular degeneration. Proceedings of the Na- tional Academy of Sciences of the United States of America. 2000;97(13):7154-7159. [Crossref]  [PubMed]  [PMC]
  28. Parker MA, Erker LR, Audo I, Choi D, Mohand-Said S, Ses- takauskas K, et al. Three-Year Safety Results of SAR422459 (EIAV-ABCA4) Gene Therapy in Patients With ABCA4-As- sociated Stargardt Disease: An Open-Label Dose-Escalation Phase I/IIa Clinical Trial, Cohorts 1-5. American jour- nal of ophthalmology. 2022;240:285-301. [Crossref]  [PubMed]  [PMC]
  29. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nich- olson BW, Weigel-DiFranco C, et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Archives of ophthalmology (Chi- cago, Ill : 1960). 1993;111(6):761-772. [Crossref]  [PubMed]
  30. Cui X, Kim HJ, Cheng CH, Jenny LA, Lima de Carvalho JR, Chang YJ, et al. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Human molecular genetics. 2022;31(14):2438- 2451. [Crossref]  [PubMed]  [PMC]
  31. Campochiaro PA, Iftikhar M, Hafiz G, Akhlaq A, Tsai G, Wehling D, et al. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. The Journal of clinical investigation. 2020;130(3):1527-1541. [Crossref]  [PubMed]  [PMC]
  32. Vollrath D, Feng W, Duncan JL, Yasumura D, D'Cruz PM, Chappelow A, et al. Correction of the retinal dystrophy phe- notype of the RCS rat by viral gene transfer of Mertk. Pro- ceedings of the National Academy of Sciences of the United States of America. 2001;98(22):12584-12589. [Crossref]  [PubMed]  [PMC]
  33. Garafalo AV, Cideciyan AV, Héon E, Sheplock R, Pearson A, WeiYang Yu C, et al. Progress in treating inherited ret- inal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives. Progress in retinal and eye research. 2020;77:100827. [Crossref]  [PubMed]  [PMC]
  34. Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE. Dual adeno-associated virus vectors result in efficient in vi- tro and in vivo expression of an oversized gene, MYO7A. Human gene therapy methods. 2014;25(2):166-177. [Crossref]  [PubMed]  [PMC]
  35. Chen C, Sun Q, Gu M, Qian T, Luo D, Liu K, et al. Multimod- al imaging and genetic characteristics of Chinese patients with USH2A-associated nonsyndromic retinitis pigmentosa. Molecular genetics & genomic medicine. 2020;8(11):e1479. [Crossref]  [PubMed]  [PMC]
  36. Gao FJ, Wang DD, Chen F, Sun HX, Hu FY, Xu P, et al. Prevalence and genetic-phenotypic characteristics of pa- tients with USH2A mutations in a large cohort of Chinese patients with inherited retinal disease. The British journal of ophthalmology. 2021;105(1):87-92. [Crossref]  [PubMed]  [PMC]
  37. Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules. 2024;14(8). [Crossref]  [PubMed]  [PMC]
  38. Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-vi- ral episomal vectors. Molecular therapy : the journal of the American Society of Gene Therapy. 2023;31(9):2755-2766. [Crossref]  [PubMed]  [PMC]
  39. Fuster-García C, García-García G, González-Romero E, Jai- jo T, Sequedo MD, Ayuso C, et al. USH2A Gene Editing Us- ing the CRISPR System. Molecular therapy Nucleic acids. 2017;8:529-541. [Crossref]  [PubMed]  [PMC]
  40. Yao L, Zhang L, Qi LS, Liu W, An J, Wang B, et al. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome. PloS one. 2016;11(5):e0155619. [Crossref]  [PubMed]  [PMC]
  41. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited reti- nal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet (London, England). 2017;390(10097):849-860. [Crossref]  [PubMed]
  42. Deng C, Zhao PY, Branham K, Schlegel D, Fahim AT, Jayasundera TK, et al. Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-asso- ciated Leber congenital amaurosis. Graefe's archive for clin- ical and experimental ophthalmology = Albrecht von Graef- es Archiv fur klinische und experimentelle Ophthalmologie. 2022;260(5):1543-1550. [Crossref]  [PubMed]  [PMC]
  43. Maguire AM, Russell S, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy, Safety, and Durability of Vore- tigene Neparvovec-rzyl in RPE65 Mutation-Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Tri- als. Ophthalmology. 2019;126(9):1273-1285. [Crossref]  [PubMed]
  44. Maguire AM, Russell S, Chung DC, Yu ZF, Tillman A, Drack AV, et al. Durability of Voretigene Neparvovec for Biallelic RPE65-Mediated Inherited Retinal Disease: Phase 3 Results at 3 and 4 Years. Ophthalmology. 2021;128(10):1460-1468. [Crossref]  [PubMed]
  45. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolma- chova T, Seymour L, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clini- cal trial. Lancet (London, England). 2014;383(9923):1129- 1137. [Crossref]  [PubMed]