DEEP LEARNING APPLICATIONS FOR NONCONTACT MONITORING IN HEALTHCARE
Ufuk Bal1 Ebubekir Akkuş2 Özge Taylan Moral3
1Osmaniye Korkut Ata University, Faculty of Engineering and Natural Sciences, Department of Electrical and Electronics Engineering, Osmaniye, Türkiye
2Aydın Adnan Menderes University, Germencik Yamantürk Vocational School, Department of Electronics and Automation, Aydın, Türkiye
3İstanbul University-Cerrahpasa, Vocational School of Technical Sciences, Department of Electronics and Automation, İstanbul, Türkiye
Bal U, Akkuş E, Taylan Moral Ö. Deep Learning Applications For Noncontact Monitoring In Healthcare. In: Bal A, editor. Noninvasive Monitoring of Critically Ill Child. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.135-146.
ABSTRACT
This chapter explores the transformative potential of deep learning in revolutionizing the care of criti- cally ill pediatric patients. By leveraging data from optical sensors and video recordings, Deep learning algorithms enable accurate, contactless estimation of vital signs, facilitating early disease detection, personalized treatment, and remote monitoring. This technology holds significant promise for improv- ing outcomes, particularly for vulnerable populations such as preterm infants and children with chronic conditions. The chapter examines the technical foundations of various deep learning models, including convolutional neural networks, recurrent neural networks, and graph neural networks. Additionally, it addresses the ethical implications of artificial intelligence in healthcare, highlighting the importance of data privacy, algorithmic bias, and explainability to build trust and encourage widespread adoption. By overcoming these challenges, deep learning has the potential to revolutionize pediatric care, leading to improved patient outcomes, reduced healthcare costs, and an enhanced quality of life for children and their families.
Keywords: Deep learning; Non-contact monitoring; Pediatric healthcare; Predictive analytics; Personalized medicine.
Kaynak Göster
Referanslar
- Cha YJ, Ali R, Lewis J, Büyüköztürk O. Deep learning-based structural health monitoring. Automation in Construction, 2024:161;105328. [Crossref]
- Bhamare M, Kulkarni PV, Rane R, Bobde S, Patankar R. TinyML applications and use cases for healthcare. In TinyML for Edge Intelligence in IoT and LPWAN Networks 2024;331-353. Academic Press. [Crossref]
- Krishna T, Kalluri S Kumar H. "Deep Learning and Transfer Learning Approaches for Image Classification", IJRTE, 2019;7:(5S4), 427-432. [Link]
- Akkuş E, Bal U, Koçoğlu FÖ, Beyhan S. . Hyperparameter optimization of pre-trained convolutional neural networks using adolescent identity search algorithm. Neural Computing and Applications,2024;36(4), 1523-1537. [Crossref]
- Jagani D, Degadwala S. Monkeypox Skin Lesion Classification Using Fine-Tune CNN Model. In 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN) 2024;May:37-41. IEEE. [Crossref]
- Zahoor MM, Khan SH, Alahmadi T J, Alsahfi T, Mazroa AS. A, et al. Brain tumor MRI classification using a novel deep residual and regional CNN. Biomedicines, 2024;12(7), 1395. [Crossref] [PubMed] [PMC]
- Ahmed Y, Haldar V, Singh T, Saini A. Brain stroke detection using 3D CNN. In: Proceedings of the 2nd International Conference on Disruptive Technologies (ICDT); March 2024; IEEE. p. 784-788.. [Crossref] [PubMed]
- Barulina M, Ulitin I, Kaluta T, Fedonnikov A. An overview of using deep learning algorithms for anemia detection. In: Artificial Intelligence in Engineering and Science: Proceedings of the International Conference; November 2024. Cham: Springer International Publishing; 2024. p. 605-615. [Crossref]
- Stogiannopoulos T, Cheimariotis GA, Mitianoudis N. A non-contact SpO2 estimation using video magnification and infrared data. In: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2023. p. 1-5. [Crossref]
- Choudhary S, Saurav S, Saini R. et al. Capsule networks for computer vision applications: a comprehensive review. Appl Intell 2023;53:21799-21826. [Crossref]
- Paul SG, Saha A, Hasan MZ, Noori SRH, Moustafa A. A systematic review of graph neural network in healthcare-based applications: Recent advances, trends, and future directions. IEEE Access. 2024;12:15145-15170. [Crossref]
- Kaliappan S, Kamal MR, Balaji V, Kumar GR. Advanced Neural Network Models for Predictive Analytics and Healthcare Management in Neurodegenerative Diseases. In International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC) 2024;1-6. IEEE. [Crossref]
- Wang J, Li X, Li J, Sun Q, Wang H. NGCU: A new RNN model for time-series data prediction. Big Data Research, 2022;27:100296. [Crossref]
- Rao S, Kulkarni S, Mehta S, Tawde P. Edge Computing-Based Heart Rate Monitoring System using RNN and LSTM. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT)2023;July:1-4. IEEE. [Crossref]
- Rajarajan S, Kalaivani R, Kaliammal N, SaravananST, Ilampiray P, Srinivasan C. IoT-Enabled Respiratory Pattern Monitoring in Critical Care: A Real-Time Recurrent Neural Network Approach. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) 2024;Apr:508-513. IEEE. [Crossref]
- Tang J, Li J, Wang J, Li Y, Yang Y, Song Z, Deng B. Analyzing sleep thermal comfort with an attention-based gated recurrent unit neural network. Building and Environment, 2024;262:111831. [Crossref]
- Nancy AA, Ravindran D, Raj Vincent PD, Srinivasan K, Gutierrez Reina D. Iot-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning. Electronics,2022;11(15):2292. [Crossref]
- Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010;11929: [Link]
- Bazi Y, Bashmal L, Rahhal MMA, Dayil RA, Ajlan NA. Vision transformers for remote sensing image classification. Remote Sensing,2021;13(3):516. [Crossref]
- Gheflati B, Rivaz H. Vision transformers for classification of breast ultrasound images. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 2022;July:480-483. IEEE. [Crossref] [PubMed]
- Yuan H, Cai Z, Zhou H, Wang Y, Chen X. Transanomaly: Video anomaly detection using video vision transformer. IEEE Access, 2021;9:123977-123986. [Crossref]
- Guo MH, Lu CZ, Liu ZN, Cheng MM, Hu SM. Visual attention network. Computational Visual Media,2023;9(4): 733-752. [Crossref]
- Blockeel H."Hypothesis Space", Encyclopedia of MachineLearning:2011;511-513. [Crossref]
- Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 2022;115:105151. [Crossref]
- Liz H, Sánchez-Montañés M, Tagarro A, Domínguez-Rodríguez S, Dagan R, Camacho D. Ensembles of convolutional neural network models for pediatric pneumonia diagnosis. Future Generation Computer Systems, 2021;122:220-233. [Crossref]
- Huang B, Chen W, Lin CL, Juang CF, Xing Y, Wang Y, et al. A neonatal dataset and benchmark for non-contact neonatal heart rate monitoring based on spatio-temporal neural networks. Engineering Applications of Artificial Intelligence, 2021;106:104447. [Crossref]
- Yang Y, Lian C, Zhang H, Li L, ZhaoY. (2021). Robust and remote measurement of heart rate based on a surveillance camera. bioRxiv, 2021;05. [Crossref]
- Zhang X, Xia Z, Dai J, Liu L, Peng J, Feng X. MSDN: A multi-stage deep network for heart-rate estimation from facial videos. IEEE Transactions on Instrumentation and Measurement. 2023:1-15:72. [Crossref]
- Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. Journal of medical Internet research, 2020;22(7):e18477. [Crossref] [PubMed] [PMC]
- Ouzar Y, Djeldjli D, Bousefsaf F, Maaoui C. (2023). X-iPPGNet: A novel one stage deep learning architecture based on depthwise separable convolutions for video-based pulse rate estimation. Computers in Biology and Medicine, 154,106592. [Crossref] [PubMed]
- Zongheng G, Huahua C, Lili L, Wenhui Z, Meng Y, Na Y, et al. Remote heart rate estimation via convolutional neural networks with transformers. Journal of the Franklin Institute, 2023;360(17):13149-13165. [Crossref]
- Zhang X, Yang C, Yin R, Meng L. An End-to-End Heart Rate Estimation Scheme Using Divided Space-Time Attention. Neural Processing Letters, 2023;55(3):2661-2685. [Crossref]
- Yu Z, Shen Y, Shi J, Zhao H, Cui Y, Zhang J, Zhao G. Physformer++: Facial video-based physiological measurement with slowfast temporal difference transformer. International Journal of Computer Vision, 2023;131(6):1307-1330. [Crossref]
- Das M, Bhuyan MK, Sharma LN. Time-Frequency Learning Framework for rPPG Signal Estimation Using Scalogram Based Feature Map of Facial Video Data. IEEE Transactions on Instrumentation and Measurement.2023;1-10:72 [Crossref]
- Antink CH, Ferreira JCM, Paul M, Lyra S, Heimann K, Karthik S, Leonhardt S. Fast body part segmentation and tracking of neonatal video data using deep learning. Medical & Biological Engineering & Computing, 2020;58:3049-3061. [Crossref] [PubMed] [PMC]
- Shao H, Luo L, Qian J, Chen S, Hu C, Yang J. TranPhys: Spatiotemporal Masked Transformer Steered Remote Photoplethysmography Estimation. IEEE Transactions on Circuits and Systems for Video Technology. 2024 Apr;3030-3042:34. [Crossref]
- Stogiannopoulos, T, Cheimariotis GA, Mitianoudis N. A study of machine learning regression techniques for non-contact spo2 estimation from infrared motion-magnified facial video. Information, 2023:14(6); 301. [Crossref]
- Hu M, Wu X, Wang, X, Xing Y, An N, Shi P. Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning. Biomedical Signal Processing and Control,2023;81: 104487. [Crossref] [PubMed] [PMC]
- Chaichulee, Sitthichok, Mauricio Villarroel, Joao Jorge, Carlos Arteta, Kenny McCormick, Andrew Zisserman, and Lionel Tarassenko. "Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning." Physiological Measurement 40, no. 11 (2019): 115001. [Crossref] [PubMed] [PMC]
- Mitani A, Huang A, Venugopalan S, Corrado GS, Peng L, Webster DR, Varadarajan AV. Detection of anaemia from retinal fundus images via deep learning. Nature biomedical engineering,2020;4(1):18-27. [Crossref] [PubMed]
- Yılmaz H, Kızılateş BS, Shaaban F, Karataş Z R. A novel combined deep learning methodology to non-invasively estimate hemoglobin levels in blood with high accuracy. Medical Engineering & Physics, 2022;108:103891. [Crossref] [PubMed]
- Hu XY, Li YJ, Shu X, Song AL, Liang H, SunYZ.,YiB. A new, feasible, and convenient method based on semantic segmentation and deep learning for hemoglobin monitoring. Frontiers in Medicine, 2023;10:1151996. [Crossref] [PubMed] [PMC]
- Chen Y, Hu X, Zhu Y, Liu X, Yi B. Real-time non-invasive hemoglobin prediction using deep learning-enabled smartphone imaging. BMC Medical Informatics and Decision Making, 2024;24(1):187. [Crossref] [PubMed] [PMC]
- Zhao X, Meng L, Su H, Lv B, Lv C, Xie G, Chen Y. Deeplearning-based hemoglobin concentration prediction and anemia screening using ultra-wide field fundus images. Frontiers in Cell and Developmental Biology, 2022;10: 888268. [Crossref] [PubMed] [PMC]
- DePaoli DT, Tossou P, Parent M, Sauvageau D, Côté DC. Convolutional neural networks for spectroscopic analysis in retinal oximetry. Scientific reports, 2019;9(1): 11387. [Crossref] [PubMed] [PMC]
- Moral ÖT, BalM U. Non-contact total hemoglobin estimation using a deep learning model. In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)2020 Oct;1-6:IEEE. [Crossref]
- Lakshmi PV, NidhiBartakke P, Rao GRC, Srikanth D. "Diagnosis Of Diabetic Retin.opathy With Transfer Learning From Deep Convolutional Neural Network", Journal Of Critical Reviews,2020;7:11. [Link]
- Hacisoftaoglu,RE, Karakaya M, Sallam AB. "Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems", Pattern Recognition Letters,2020;135:409-417. [Crossref] [PubMed] [PMC]
- Thomas SJ, Titus G. "Design of a portable retinal imaging module with automatic abnormality detection", Biomedical Signal Processing and Control, 2022;60: 10196. [Crossref]
- Kumar, P, Yashini PA. Novel Machine Learning Approach for Medical Recommendation System. In 2024 10th International Conference on Communication and Signal Processing (ICCSP)2024; Apr:1-6. IEEE. [Crossref]
- Zhou X, Li Y, Liang W. CNN-RNN based intelligent recommendation for online medical pre-diagnosis support. IEEE/ ACM Transactions on Computational Biology and Bioinformatics,2020;18(3):912-921. [Crossref] [PubMed]
- Mantey EA, Zhou C, Anajemba JH, Okpalaoguchi IM, Chiadika ODM. Blockchain-secured recommender system for special need patients using deep learning. Frontiers in Public Health, 2021;9:737269. [Crossref] [PubMed] [PMC]
- Shah N, Arshad A, Mazer MB, Carroll CL, Shein SL, Remy KE. The use of machine learning and artificial intelligence within pediatric critical care. Pediatric Research,2023;93(2):405-412. [Crossref] [PubMed] [PMC]
- Badawy M, Ramadan N, Hefny HA. Healthcare predictive analytics using machine learning and deep learning techniques: a survey. Journal of Electrical Systems and Information Technology, 2023:10(1);40. [Crossref]
- McAdams RM, KaurR, Sun Y, Bindra H, Cho SJ, Singh H. Predicting clinical outcomes using artificial intelligence and machine learning in neonatal intensive care units: a systematic review. Journal of Perinatology, 2022;42(12):1561-1575. [Crossref] [PubMed]
- Defilippo A, Veltri P, Lió P, Guzzi PH. Leveraging graphneural networks for supporting automatic triage of patients. Scientific Reports, 2024;14(1):12548. [Crossref] [PubMed] [PMC]
- Alsabri M, Aderinto N, Mourid MR, Laique F, Zhang S, Shaban NS, Gamboa LL. Artificial Intelligence for Pediatric Emergency Medicine. Journal of Medicine, Surgery, and Public Health, 2024;3:100137. [Crossref]
- Xie Q, Faust K, Van Ommeren R, Sheikh A, Djuric U, Diamandis P. Deep learning for image analysis: Personalizing medicine closer to the point of care. Critical Reviews in Clinical Laboratory Sciences, 2019;56(1):61-73. [Crossref] [PubMed]
- Chakraborty C, Bhattacharya M, Pal S, Lee SS. From machine learning to deep learning: An advances of the recent data-driven paradigm shift in medicine and healthcare. Current Research in Biotechnology, 2024;100164. [Crossref]
- Ghebrehiwet I, Zaki N, Damseh R, Mohamad MS.Revolutionizing personalized medicine with generative AI: a systematic review. Artificial Intelligence Review, 2024;57(5): 1-41. [Crossref]