Derinin Yapısı ve İmmün Sistemi

Songül ÇİLDAĞa
aAydın Adnan Menderes Üniversitesi Tıp Fakültesi, İmmünoloji ve Alerji Hastalıkları BD, Aydın, TÜRKİYE

Çildağ S. Derinin yapısı ve immün sistemi. Çildağ S, editör. İmmünolojik ve Alerjik Deri Hastalıkları. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.1-6.

ÖZET
Vücudu dış etkenlerden koruyucu özelliği yanında metabolik fonksiyonlara da sahip olan deri, asıl olarak keratinositlerin oluşturduğu epidermis, temelde kollojen liferinden oluşan dermis ve yağ dokudan oluşan hipodermis olmak üzere üç tabakadan oluşur. Deri doğal ve kazanılmış immün sistem elemanlarının katkısıyla konak defansında, inflamasyon ve doku onarımında görevli kompleks bir yapıya sahiptir.

Anahtar Kelimeler: Epidermis; dermis; subkutan doku; bağışıklık sistemi

Referanslar

  1. Odland gF. Structure of the skin. In: goldsmith LA, editor. Physiology, biochemistry and molecular biology of the skin. 2 nd ed. New York: Oxford University Press; 1991. p. 3-62.
  2. Kanitakis j. Anatomy, histology and immunohistochemistry of normal human skin. Eur j Dermatol. 2002;12(4):390-9.
  3. Murphy g. F. Histology of the skin. In: Elder D, Elenitsas R, jaworskyC, johnson B, eds. Lever's histopathology of the skin. 8th ed. Philadelphia: Lippincott Williams & Wilkins, 1997. p. 5-45.
  4. Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med. 2014;20(8):847-56. [Crossref]  [PubMed]  [PMC]
  5. Koster MI. Making an epidermis. Ann N Y Acad Sci. 2009;1170:7-10. [Crossref]  [PubMed]  [PMC]
  6. Lizuka H. Epidermal turnover time. j Dermatol Sci. 1994;8(3):215-7. [Crossref]  [PubMed]
  7. Chu DH. Overview of biology, development, and structure of skin. In: K Wolff, LA goldsmith, S I Katz, BA gilchrest, AS Paller, Dj Leffell, eds, Fitzpatrick's dermatology in general medicine. 7th ed. New York: Mcgraw-Hill; 2008. p 57-73.
  8. Yagi M, Yonei Y. glycative stress and antiaging:7. glycative stress and skin aging. glycative Stress Research. 2018;5(1):050-4.
  9. Gayraud B, Hopfner B, jassim A, Aumailley M, Bruckner- Tuderman L. Characterization of a 50- kDa component of epithelial basement membranes using gDA-j/F3 monoclonal antibody. jBiol Chem.1997;272(14):9531-8. [Crossref]  [PubMed]
  10. Stepp MA, Spurr-Michaud S, Tisdale A, Elwell j, gipson I K. Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA. 1990;87(22): 8970-4. [Crossref]  [PubMed]  [PMC]
  11. green EM, Mansfield jC, Bell jS, Winlove CP. The structure and micromechanics of elastic tissue. Interface Focus. 2014;4(2):20130058. [Crossref]  [PubMed]  [PMC]
  12. Kolarsick Paul Aj, Kolarsick MA, goodwin C. Anatomy and Physiology of the Skin. journal of the Dermatology Nurses' Association. 2011; 3(4):203-13. [Crossref]
  13. Boulant, j. A. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis. 2000;31(5);157-61. [Crossref]  [PubMed]
  14. Woodley, D.T. Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing. Dermatol Clin. 2017;35(1): 95- 100. [Crossref]  [PubMed]
  15. Chu D H. Overview of biology, development, and structure of skin. In: goldsmith LA, Katz SI, gilchrest BA, Paller AS, Leffell Dj, eds. Fitzpatrick's dermatology in general medicine. 7th ed. New York: Mcgraw-Hill; 2001. p. 57-73.
  16. james WD, Berger Tg, Elston DM. Andrews's diseases of the skin: Clinical dermatology.10th ed. Philadelphia: Elsevier Saunders; 2006.
  17. Menon gK, Cleary gW, Lane ME. The structure and function of the stratum corneum. Int j Pharm. 2012;435(1):3-9. [Crossref]  [PubMed]
  18. Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017; 26(11):989-98. [Crossref]  [PubMed]
  19. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 2006;19(6): 296-302. [Crossref]  [PubMed]
  20. Kashem SW, Haniffa M, Kaplan DH. AntigenPresenting Cells in the Skin. Annu Rev Immunol. 2017;35:469-99. [Crossref]  [PubMed]
  21. Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. jCI Insight. 2019; 4(1):123947 [Crossref]  [PubMed]  [PMC]
  22. Suwanpradid j, Holcomb zE, MacLeod AS. Emerging Skin T-Cell Functions in Response to Environmental Insults. j Invest Dermatol. 2017;137(2):288-94. [Crossref]  [PubMed]  [PMC]
  23. Nguyen AV, Soulika AM. The Dynamics of the Skin's Immune System. Int j Mol Sci. 2019; 20(8):1811. [Crossref]  [PubMed]  [PMC]
  24. Deckers j, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front. Immunol. 2018;9:93. [Crossref]  [PubMed]  [PMC]
  25. Atmatzidis DH, Lambert WC, Lambert MW. Langerhans cells: exciting developments in health and disease. j Eur Acad Dermatol Venereol. 2017;31(11):1817-24. [Crossref]  [PubMed]
  26. Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol. 2017;18(10):1069-75. [Crossref]  [PubMed]  [PMC]
  27. Strandt H, Pinheiro DF, Kaplan DH, Wirth D, gratz IK, Hammerl P, et al.Neoantigen Expression in Steady-State Langerhans Cells Induces CTLTolerance. j Immunol. 2017;199 (5):1626-34. [Crossref]  [PubMed]  [PMC]
  28. Novak N, Koch S, Allam jP, Bieber T. Dendritic cells: bridging innate and adaptive immunity in atopic dermatitis. j Allergy Clin Immunol. 2010;125(1):50-9. [Crossref]  [PubMed]
  29. Yu CF, Peng WM, Oldenburg j, Hoch j, Bieber T, Limmer A, et al. Human plasmacytoid dendritic cells support Th17 cell effector function in response to TLR7 ligation. j Immunol. 2010;184(3):1159-67. [Crossref]  [PubMed]
  30. Yu CF, Peng WM, Schlee M, Barchet W, EisHübinger AM, Kolanus W, et al. SOCS1 and SOCS3 Target IRF7 Degradation To Suppress TLR7-Mediated Type I IFN Production of Human Plasmacytoid Dendritic Cells. j Immunol. 2018;200(12):4024-35. [Crossref]  [PubMed]
  31. Sheng j, Ruedl C, Karjalainen K. Most TissueResident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. Immunity.2015;43(2):382-93. [Crossref]  [PubMed]
  32. TamoutounourS, guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C,et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39(5):925-38. [Crossref]  [PubMed]
  33. Eichmuller S, van derVeen C, Moll I, Hermes B, Hofmann U, Muller-Rover S, Paus R. Clusters of perifollicular macrophages in normal murine skin: Physiological degeneration of selected hair follicles by programmed organ deletion. j. Histochem. Cytochem. 1998;46 (3);361-70. [Crossref]  [PubMed]
  34. Nahrendorf M, Swirski F.K. Abandoning M1/M2 for a Network Model of Macrophage Function. Circ Res. 2016;119(3):414-7. [Crossref]  [PubMed]  [PMC]
  35. janssens AS, Heide R, den Hollander jC, Mulder Pg, Tank B, Oranje AP. Mast cell distribution in normal adult skin. j Clin Pathol. 2005;58(3):285-9. [Crossref]  [PubMed]  [PMC]
  36. Bradding P, Saito H. Biology of Mast Cells and Their Mediators. In: Adkinson F, Bochner B, Burks A, Holgate S, Lemanske R, O'Hehir R, eds. Middleton's Allergy: Principles and Practice. 8st ed.Philadelphia: Elsevier Saunders; 2013. p. 228-51. [Crossref]
  37. Mukai K, Tsai M, Saito H, galli Sj. Mast cells as sources of cytokines,chemokines, and growth factors. Immunol Rev. 2018;282(1): 121-50. [Crossref]  [PubMed]  [PMC]
  38. Subramanian H, gupta K, Ali H. Roles of Mas-related g protein-coupled receptor X2 on mast cell-mediated host defense,pseudoallergic drug reactions,and chronic inflammatorydiseases. j Allergy Clin Immunol. 2016;138(3): 700-10. [Crossref]  [PubMed]  [PMC]
  39. Fujisawa D, Kashiwakura j, KitaH, Kikukawa Y, Fujitani Y, Sasaki-Sakamoto T, et al. Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria. j Allergy Clin Immunol. 2014;134(3):622-33. [Crossref]  [PubMed]
  40. Yu YR, O'Koren Eg, Hotten DF, Kan Mj, Kopin D, Nelson ER, et al. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues. PLoS One. 2016; 11(3): e0150606. [Crossref]  [PubMed]  [PMC]
  41. Long H, zhang g, Wang L, Lu Q. Eosinophilic Skin Diseases: A Comprehensive Review. Clin Rev Allergy Immunol. 2016;50(2):189-213. [Crossref]  [PubMed]
  42. Spencer LA, Szela CT, Perez SA, Kirchhoer CL, Neves jS, Radke AL, Weller PF. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. j Leukoc Biol. 2009;85(1):117-23. [Crossref]  [PubMed]  [PMC]
  43. Luna-gomes T, Magalhaes Kg, MesquitaSantos FP, Bakker-Abreu I, Samico RF, Molinaro R, Calheiros AS, et al. Eosinophils as a novel cell source of prostaglandinD2: Autocrine role in allergic inflammation. j Immunol. 2011;187(12):6518-26. [Crossref]  [PubMed]  [PMC]
  44. Ueki S, Melo RC, ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 2013;121(11):2074-83. [Crossref]  [PubMed]  [PMC]
  45. Ofuji, S. Eosinophilic pustular folliculitis. Dermatologica. 1987;174(2):53-6. [Crossref]  [PubMed]
  46. F. Ferrier M.C, janin-Mercier A, Souteyrand P, Bourges M, Hermier C. Eosinophilic cellulitis (Wells'syndrome): Ultrastructural study of a case with circulating immune complexes. Dermatologica. 1988;176(6):299-304. [Crossref]  [PubMed]
  47. Elbe A, Foster CA, Stingl g. T-cell receptor alpha beta and gamma delta T cells in rat and human skin-are they equivalent? Semin Immunol. 1996;8(6):341-9. [Crossref]  [PubMed]
  48. Mackay LK, Rahimpour A, Ma jz, Collins N, Stock AT, Hafon ML, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 2013; 14(12):1294-301. [Crossref]  [PubMed]
  49. Gomez de Aguero M, Vocanson M, HaciniRachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. j Clin Invest. 2012;122(5):1700-11. [Crossref]  [PubMed]  [PMC]
  50. Muraro A, Lemanske RF jr, Hellings PW, Akdis CA, Bieber T, Casale TB, et al. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitisPRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. j Allergy Clin Immunol. 2016;137 (5):1347-58. [Crossref]  [PubMed]
  51. Werfel T, Allam jP, Biedermann T, Eyerich K, gilles S, guttman-Yassky E, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. j AllergyClin Immunol. 2016;138(2):336-49. [Crossref]  [PubMed]
  52. Breiteneder H, Diamant z, Eiwegger T, Fokkens Wj, Traidl-Hoffmann C, Nadeau K, et al. Future trends in mechanisms and patient care in allergic diseases. Allergy. 2019;74(12): 2293-311. [Crossref]  [PubMed]  [PMC]
  53. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, graeve T, et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. j Clin Invest. 2000;106(1):25-35. [Crossref]  [PubMed]  [PMC]
  54. Pichler Wj. Immune pathomechanism and classification of drug hypersensitivity. Allergy.. 2019;74(8):1457-71. [Crossref]  [PubMed]
  55. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg gF, et al. TSLP elicits IL33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5(170):170ra16. [Crossref]
  56. Salimi M, Barlow jL, Saunders SP, Xue L, gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. j Exp Med. 2013; 210(13):2939-50. [Crossref]  [PubMed]  [PMC]
  57. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA. 2013;110(34):13921-26. [Crossref]  [PubMed]  [PMC]
  58. Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff jR, Monticelli LA, et al. Basophils promote innate lymphoid cell responses in inflamed skin. j Immunol. 2014;193(7):3717- 25. [Crossref]  [PubMed]  [PMC]
  59. Nihal M, Mikkola D, Wood gS. Detection of clonally restricted immunoglobulin heavy chain gene rearrangements in normal and lesional skin: Analysis of the B cell component of the skin-associated lymphoid tissue and implications for the molecular diagnosis of cutaneous B cell lymphomas. j Mol Diagn. 2000; 2(1):5-10. 60. [Crossref]  [PubMed]
  60. Egbuniwe IU, Karagiannis SN, Nestle FO, Lacy KE. Revisiting the role of B cells in skin immune surveillance. Trends Immunol. 2015; 36(2):102-11. [Crossref]  [PubMed]
  61. Postigo AA, Marazuela M, Sanchez-Madrid F, de Landazuri M.O. B lymphocyte binding to Eand P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells. j Clin Investig. 1994;94(4):1585-96. [Crossref]  [PubMed]  [PMC]
  62. Simon D, Hösli S, Kostylina g, Yawalkar N, Simon HU. Anti-CD20 (rituximab) treatment improves atopic eczema. j. Allergy Clin. Immunol. 2008;121(1):122-8. [Crossref]  [PubMed]
  63. Geiger B, Wenzel j, Hantschke M, Haase I, Stander S, von Stebut E. Resolving lesions in human cutaneous leishmaniasis predominantly harbour chemokine receptor CXCR3-positive T helper 1/T cytotoxic type 1 cells. Br j Dermatol. 2010;162(4):870-4. [Crossref]  [PubMed]
  64. Lafyatis R, Kissin E, York M, Farina g, Viger K, Fritzler Mj, et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2009;60(2): 578-83. [Crossref]  [PubMed]  [PMC]