Dermatophytosis in Laboratory Animals

veterinerbilichastaliklari10-3-24kapak

Ali Haydar KIRMIZIGÜLa , Mert SEZERa , Yusuf Umut BATIa
aKafkas University Faculty of Veterinary Medicine, Department of Internal Medicine, Kars, Türkiye

ABSTRACT
Animal models of dermatophytosis are essential to test the efficacy of antifungal compounds and also to learn about both the immunology and pathogenesis of the disease. Most of the proposed animal models are very useful in determining the efficacy of newly developed or previously used antifungal compounds against dermatophytes. However, the orientation of the immune response induced during dermatophytosis is decisive for the progression of the infection. The method of experimentally infecting laboratory animals is also of great importance. It is best to introduce the animal into a group of naive congeners to perfectly mimic a natural infection. In both veterinary medicine and human medicine, dermatophytosis is very common and experimental animals are used to determine treatment options and develop treatments. Therefore, experimental animals are very important in dermatophytosis.

Keywords: Dermatophytosis; guinea pig; mouse

Referanslar

  1. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8(2):240-59. [Crossref]  [PubMed]  [PMC]
  2. Chermette R, Ferreiro L, Guillot J. Dermatophytoses in animals. Mycopathologia. 2008;166(5-6):385-405. [Crossref]  [PubMed]
  3. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166(5-6):257-65. [Crossref]  [PubMed]
  4. Brasch J. Current knowledge of host response in human tinea. Mycoses. 2009;52(4):304-12. [Crossref]  [PubMed]
  5. Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008;166(5-6):335-52. [Crossref]  [PubMed]
  6. Ameen M. Epidemiology of superficial fungal infections. Clin Dermatol. 2010;28(2):197-201. [Crossref]  [PubMed]
  7. Cambier L, Heinen MP, Mignon B. Relevant Animal Models in Dermatophyte Research. Mycopathologia. 2017;182(1-2):229-40. [Crossref]  [PubMed]
  8. Saunte DM, Hasselby JP, Brillowska-Dabrowska A, et al. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostics and antifungals. Med Mycol. 2008;46(4):303-13. [Crossref]  [PubMed]
  9. Grumbt M, Defaweux V, Mignon B, Monod M, Burmester A, Wöstemeyer J, et al. Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae. Eukaryot Cell. 2011;10(6):842-53. [Crossref]  [PubMed]  [PMC]
  10. Reinhardt JH, Allen AM, Gunnison D, Akers WA. Experimental Human Trichophyton Mentagrophytes Infections*. J Invest Dermatol. 1974;63(5):419-22. [Crossref]  [PubMed]
  11. Kumar N, Goindi S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: characterization and in vivo evaluation using a standardized Tinea pedis infection model. Int J Pharm. 2014;472(1-2):224-40. [Crossref]  [PubMed]
  12. Weber J, Balish E. Antifungal therapy of dermatophytosis in guinea pigs and congenitally athymic rats. Mycopathologia. 1985;90(1):47-54. [Crossref]  [PubMed]
  13. Shimamura T, Kubota N, Nagasaka S, Suzuki T, Mukai H, Shibuya K. Establishment of a novel model of onychomycosis in rabbits for evaluation of antifungal agents. Antimicrob Agents Chemother. 2011;55(7):3150-5. [Crossref]  [PubMed]  [PMC]
  14. Green F, Weber JK, Balish E. The thymus dependency of acquired resistance to Trichophyton mentagrophytes dermatophytosis in rats. J Invest Dermatol. 1983;81(1):31-8. [Crossref]  [PubMed]
  15. Hunjan BS, Cronholm LS. An animal model for cell-mediated immune responses to dermatophytes. J Allergy Clin Immunol. 1979;63(5):361-9. [Crossref]  [PubMed]
  16. Mignon BR, Leclipteux T, Focant C, Nikkels AJ, Piérard GE, Losson BJ. Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol. 1999;37(2):123-9. [Crossref]  [PubMed]
  17. Descamps FF, Brouta F, Vermout SM, Willame C, Losson BJ, Mignon BR. A recombinant 31.5 kDa keratinase and a crude exo-antigen from Microsporum canis fail to protect against a homologous experimental infection in guinea pigs. Vet Dermatol. 2003;14(6):305-12. [Crossref]  [PubMed]
  18. Wakabayashi H, Takakura N, Yamauchi K, Teraguchi S, Uchida K, Yamaguchi H, et al. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J Med Microbiol. 2002;51(10):844-50. [Crossref]  [PubMed]
  19. Ghannoum MA, Hossain MA, Long L, Mohamed S, Reyes G, Mukherjee PK. Evaluation of antifungal efficacy in an optimized animal model of Trichophyton mentagrophytes-dermatophytosis. J Chemother. 2004;16(2):139-44. [Crossref]  [PubMed]
  20. Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Long L, Ghannoum MA. VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother. 2015;59(4):1992-7. [Crossref]  [PubMed]  [PMC]
  21. Li ZJ, Guo X, Dawuti G, Aibai S. Antifungal Activity of Ellagic Acid In Vitro and In Vivo. Phytother Res. 2015;29(7):1019-25. [Crossref]  [PubMed]
  22. Ghannoum MA, Long L, Pfister WR. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model. Mycoses. 2009;52(1):35-43. [Crossref]  [PubMed]
  23. Polak A. Preclinical data and mode of action of amorolfine. Dermatology. 1992;184 Suppl 1:3-7. [Crossref]  [PubMed]
  24. Arika T, Yokoo M, Yamaguchi H. Topical treatment with butenafine significantly lowers relapse rate in an interdigital tinea pedis model in guinea pigs. Antimicrob Agents Chemother. 1992;36(11):2523-5. [Crossref]  [PubMed]  [PMC]
  25. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis--dermatophytosis. Int J Pharm. 2012;437(1-2):277-87. [Crossref]  [PubMed]
  26. Ohsumi K, Murai H, Nakamura I, Watanabe M, Fujie A. Therapeutic efficacy of AS2077715 against experimental tinea pedis in guinea pigs in comparison with terbinafine. J Antibiot (Tokyo). 2014;67(10):717-9. [Crossref]  [PubMed]
  27. Mikaeili A, Modaresi M, Karimi I, Ghavimi H, Fathi M, Jalilian N. Antifungal activities of Astragalus verus Olivier. against Trichophyton verrucosum on in vitro and in vivo guinea pig model of dermatophytosis. Mycoses. 2012;55(4):318-25. [Crossref]  [PubMed]
  28. Tatsumi Y, Yokoo M, Senda H, Kakehi K. Therapeutic efficacy of topically applied KP-103 against experimental tinea unguium in guinea pigs in comparison with amorolfine and terbinafine. Antimicrob Agents Chemother. 2002;46(12):3797-801. [Crossref]  [PubMed]  [PMC]
  29. Long L, Hager C, Ghannoum M. Evaluation of the Efficacy of ME1111 in the Topical Treatment of Dermatophytosis in a Guinea Pig Model. Antimicrob Agents Chemother. 2016;60(4):2343-5. [Crossref]  [PubMed]  [PMC]
  30. Chittasobhon N, Smith JM. The production of experimental dermatophyte lesions in guinea pigs. J Invest Dermatol. 1979;73(2):198-201. [Crossref]  [PubMed]
  31. Greenberg JH, King RD, Krebs S, Field R. A quantitative dermatophyte infection model in the guinea pig--a parallel to the quantitated human infection model. J Invest Dermatol. 1976;67(6):704-8. [Crossref]  [PubMed]
  32. Cambier L, Băguţ ET, Heinen MP, Tabart J, Antoine N, Mignon B. Assessment of immunogenicity and protective efficacy of Microsporum canis secreted components coupled to monophosphoryl lipid-A adjuvant in a vaccine study using guinea pigs. Vet Microbiol. 2015;175(2-4):304-11. [Crossref]  [PubMed]
  33. Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol. 2001;39(5):463-8. [Crossref]  [PubMed]
  34. Baldo A, Mathy A, Tabart J, Camponova P, Vermout S, Massart L, et al. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol. 2010;162(5):990-7. [Crossref]  [PubMed]
  35. Staib P, Zaugg C, Mignon B, Weber J, Grumbt M, Pradervand S, et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology (Reading). 2010;156(Pt 3):884-95. [Crossref]  [PubMed]
  36. Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology. 1984;53(3):465-72.
  37. Baltazar Lde M, Santos PC, Paula TP, Rachid MA, Cisalpino PS, Souza DG, et al. IFN-γ impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1β and reactive oxygen species. Med Mycol. 2014;52(3):293-302. [Crossref]  [PubMed]
  38. Cambier L, Weatherspoon A, Defaweux V, Bagut ET, Heinen MP, Antoine N, et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol. 2014;170(3):625-33. [Crossref]  [PubMed]
  39. Mao L, Zhang L, Li H, Chen W, Wang H, Wu S, et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun. 2014; 82(2):882-92. [Crossref]  [PubMed]  [PMC]
  40. Yoshikawa FSY, Ferreira LG, de Almeida SR. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo. Virulence. 2015;6(5):449-57. [Crossref]  [PubMed]  [PMC]
  41. Singh G, Kumar P, Joshi SC. Treatment of dermatophytosis by a new antifungal agent "apigenin." Mycoses. 2014;57(8):497-506. [Crossref]  [PubMed]
  42. Gasparto AK, Baltazar LM, Gouveia LF, da Silva CM, Byrro RM, Rachid MA, et al. 2-(benzylideneamino)phenol: a promising hydroxyaldimine with potent activity against dermatophytoses. Mycopathologia. 2015;179(3-4):243-51. [Crossref]  [PubMed]
  43. Thomson M P, Anticevic C S, Rodríguez B H, Silva V V. [In vitro antifungal susceptibility, in vivo antifungal activity and security from a natural product obtained from sunrise oil (AMO3) against dermatophytes]. Rev Chilena Infectol. 2011;28(6):512-9. [Crossref]  [PubMed]
  44. Baltazar LM, Werneck SM, Carneiro HC, Gouveia LF, de Paula TP, Byrro RM, et al. Photodynamic therapy efficiently controls dermatophytosis caused by Trichophyton rubrum in a murine model. Br J Dermatol. 2015;172(3):801-4. [Crossref]  [PubMed]
  45. Hay RJ, Calderon RA, Collins MJ. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol. 1983;81(3):270-4. [Crossref]  [PubMed]
  46. Hay RJ, Calderon RA, Mackenzie CD. Experimental dermatophytosis in mice: correlation between light and electron microscopic changes in primary, secondary and chronic infections. Br J Exp Pathol. 1988;69(5):703-16.
  47. Venturini J, Alvares AM, Camargo MR, Marchetti CM, Fraga-Silva TF, Luchini AC, et al. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis. Microbes Infect. 2012;14(13):1144-51. [Crossref]  [PubMed]