Diagnosis Methods of Metabolic Myopathies: Electrophysiological Evaluation (Electromyography and Nerve Conduction Studies)

Hüseyin Bahadır ŞENOLa , Çağatay GÜNAYa , Uluç YİŞa

aDokuz Eylül University Faculty of Medicine, Department of Pediatric Neurology, İzmir, Türkiye

ABSTRACT
Despite recent advancements, the diagnosis of metabolic myopathies still presents challenges. In this process, patient history, family history, physical examination, and blood/urine tests constitute the initial stages. However, genetic tests, although often the diagnostic method of choice, are not universally accessible. Nerve conduction studies and needle electromyography (EMG) can fill this gap, especially in economically constrained settings or when genetic results are inconclusive. They also play a role in excluding many neuromuscular diseases that may present with similar symptoms and signs. While metabolic myopathies often exhibit similar, non-specific myopathic changes in electrodiagnostic evaluations in the later stages of the diseases, they may initially show normal findings. This chapter reviews nerve conduction studies and needle EMG findings related to carbohydrate/lipid metabolism related myopathies and mitochondrial myopathies.
Keywords: Myopathy with storage of glycoproteins and glycosaminoglycans; myopathy with abnormal lipid metabolism; mitochondrial myopathies; electromyography

Referanslar

  1. Finsterer J. An update on diagnosis and therapy of metabolic myopathies. Expert Rev Neurother. 2018;18(12):933-43. [Crossref]  [PubMed]
  2. Bhai SF, Vissing J. Diagnosis and management of metabolic myopathies. Muscle Nerve. 2023;68(3):250-6. [Crossref]  [PubMed]
  3. Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol. 2018;18(1):14-26. [Crossref]  [PubMed]
  4. Pitt MC. Nerve conduction studies and needle EMG in very small children. Eur J Paediatr Neurol. 2012;16(3):285-91. [Crossref]  [PubMed]
  5. Pitt M. Update in electromyography. Curr Opin Pediatr. 2013;25(6):676-81. [Crossref]  [PubMed]
  6. Pitt M. Paediatric electromyography in the modern world: a personal view. Dev Med Child Neurol. 2011;53(2):120-4. [Crossref]  [PubMed]
  7. Tavee J. Nerve conduction studies: Basic concepts. Handb Clin Neurol. 2019;160:217-24. [Crossref]  [PubMed]
  8. Kimura J. Facts, fallacies, and fancies of nerve conduction studies: twenty-first annual Edward H. Lambert Lecture. Muscle Nerve. 1997;20(7):777-87. [Crossref]
  9. Amato AA, Russell JA. Radiculopathies, Plexopathies, and Mononeuropathies of the Lower Extremity. Neuromuscular Disorders. 1st ed. United States of America: McGraw-Hill Professional; 2008. p.415-55.
  10. Preston DC, Shapiro BE. Needle electromyography. Fundamentals, normal and abnormal patterns. Neurol Clin. 2002;20(2):361-96, vi. [Crossref]  [PubMed]
  11. Daube JR, Rubin DI. Needle electromyography. Muscle Nerve. 2009;39(2):244-70. [Crossref]  [PubMed]
  12. Tarnopolsky MA. Metabolic Myopathies. Continuum (Minneap Minn). 2022;28(6):1752-77. [Crossref]  [PubMed]
  13. Chéraud C, Froissart R, Lannes B, Echaniz-Laguna A. Novel variant in the PYGM gene causing late-onset limb-girdle myopathy, ptosis, and camptocormia. Muscle Nerve. 2018;57(1):157-60. [Crossref]  [PubMed]
  14. Ediriweera HM, Gayani GG, Dilhani PD, Pathirana KD, Weerarathna TP. McArdle syndrome with recurrent rhabdomyolysis in a middle aged man. Ceylon Med J. 2014;59(3):99-100. [Crossref]  [PubMed]
  15. Walters WD, Garnica AD, Schaefer GB. McArdle Disease Presenting With Muscle Pain in a Teenage Girl: The Role of Whole-Exome Sequencing in Neurogenetic Disorders. Semin Pediatr Neurol. 2018;26:50-51. [Crossref]  [PubMed]
  16. Lorenzoni PJ, Werneck LC, Kay CSK, Arndt RC, Silvado CES, Scola RH. Single-centre experience on genotypic and phenotypic features of southern Brazilian patients with McArdle disease. Acta Neurol Belg. 2020;120(2):303-11. [Crossref]  [PubMed]
  17. Semplicini C, Hézode-Arzel M, Laforêt P, Béhin A, Leonard-Louis S, Hogrel JY, et al. The role of electrodiagnosis with long exercise test in mcardle disease. Muscle Nerve. 2018. [Crossref]  [PubMed]
  18. Kohler L, Puertollano R, Raben N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics. 2018;15(4):928-42. [Crossref]  [PubMed]  [PMC]
  19. Finsterer J, Wanschitz J, Quasthoff S, Iglseder S, Löscher W, Grisold W. Causally treatable, hereditary neuropathies in Fabry's disease, transthyretin-related familial amyloidosis, and Pompe's disease. Acta Neurol Scand. 2017;136(6):558-69. [Crossref]  [PubMed]
  20. Murase T, Ikeda H, Muro T, Nakao K, Sugita H. Myopathy associated with type 3 glycogenosis. J Neurol Sci. 1973;20(3):287-95. [Crossref]  [PubMed]
  21. DiMauro S, Hartwig GB, Hays A, Eastwood AB, Franco R, Olarte M, et al. Debrancher deficiency: neuromuscular disorder in 5 adults. Ann Neurol. 1979;5(5):422-36. [Crossref]  [PubMed]
  22. Kotb MA, Abdallah HK, Kotb A. Liver glycogenoses: are they a possible cause of polyneuropathy? A cross-sectional study. J Trop Pediatr. 2004;50(4):196-202. [Crossref]  [PubMed]
  23. Coleman RA, Winter HS, Wolf B, Chen YT. Glycogen debranching enzyme deficiency: long-term study of serum enzyme activities and clinical features. J Inherit Metab Dis. 1992;15(6):869-81. [Crossref]  [PubMed]
  24. Coleman RA, Winter HS, Wolf B, Gilchrist JM, Chen YT. Glycogen storage disease type III (glycogen debranching enzyme deficiency): correlation of biochemical defects with myopathy and cardiomyopathy. Ann Intern Med. 1992;116(11):896-900. [Crossref]  [PubMed]
  25. Kiechl S, Kohlendorfer U, Thaler C, Skladal D, Jaksch M, Obermaier-Kusser B, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry. 1999;67(3):364-8. [Crossref]  [PubMed]  [PMC]
  26. Herlin B, Laforět P, Labrune P, Fournier E, Stojkovic T. Peripheral neuropathy in glycogen storage disease type III: Fact or myth? Muscle Nerve. 2016;53(2):310-2. [Crossref]  [PubMed]
  27. Pagliarani S, Lucchiari S, Ulzi G, Violano R, Ripolone M, Bordoni A, et al. Glycogen storage disease type III: A novel Agl knockout mouse model. Biochim Biophys Acta. 2014;1842(11):2318-28. [Crossref]  [PubMed]
  28. Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, et al. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab. 2023;138(3):107525. [Crossref]  [PubMed]
  29. Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, et al. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord. 2018;19(1):93-106. [Crossref]  [PubMed]  [PMC]
  30. Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis. 2010;33(5):527-32. [Crossref]  [PubMed]
  31. Saudubray JM, Martin D, de Lonlay P, Touati G, Poggi-Travert F, Bonnet D, et al. Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis. 1999;22(4):488-502. [Crossref]  [PubMed]
  32. Ibdah JA, Tein I, Dionisi-Vici C, Bennett MJ, IJlst L, Gibson B, et al. Mild trifunctional protein deficiency is associated with progressive neuropathy and myopathy and suggests a novel genotype-phenotype correlation. J Clin Invest. 1998;102(6):1193-9. [Crossref]  [PubMed]  [PMC]
  33. Spiekerkoetter U, Bastin J, Gillingham M, Morris A, Wijburg F, Wilcken B. Current issues regarding treatment of mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis. 2010;33(5):555-61. [Crossref]  [PubMed]
  34. Merritt JL 2nd, MacLeod E, Jurecka A, Hainline B. Clinical manifestations and management of fatty acid oxidation disorders. Rev Endocr Metab Disord. 2020;21(4):479-93. [Crossref]  [PubMed]  [PMC]
  35. Wang Z, Hong D, Zhang W, Li W, Shi X, Zhao D, et al. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2016;26(2):170-5. [Crossref]  [PubMed]
  36. Pareyson D, Piscosquito G, Moroni I, Salsano E, Zeviani M. Peripheral neuropathy in mitochondrial disorders. Lancet Neurol. 2013;12(10):1011-24. [Crossref]  [PubMed]
  37. Menezes MP, Ouvrier RA. Peripheral neuropathy associated with mitochondrial disease in children. Dev Med Child Neurol. 2012;54(5):407-14. [Crossref]  [PubMed]
  38. Yu-Wai-Man P, Votruba M, Burté F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789-806. [Crossref]  [PubMed]  [PMC]
  39. Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci. 2011;304(1-2):9-16. [Crossref]  [PubMed]  [PMC]
  40. Schröder JM. Neuropathy associated with mitochondrial disorders. Brain Pathol. 1993;3(2):177-90. [Crossref]  [PubMed]
  41. Goebel HH, Bardosi A, Friede RL, Kohlschütter A, Albani M, Siemes H. Sural nerve biopsy studies in Leigh's subacute necrotizing encephalomyelopathy. Muscle Nerve. 1986;9(2):165-73. [Crossref]  [PubMed]
  42. Günay Ç, Paketçi C, Edem P, Uzan G, Hız AS, Arslan Gülten Z, et al. Evaluation of the Genetically Diagnosed Mitochondrial Disease Cases with Neuromuscular Involvement. 2022;12(1):27-36. [Crossref]
  43. Bindu PS, Govindaraju C, Sonam K, Nagappa M, Chiplunkar S, Kumar R, et al. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India. Mitochondrion. 2016;27:1-5. [Crossref]  [PubMed]
  44. Luigetti M, Sauchelli D, Primiano G, Cuccagna C, Bernardo D, Lo Monaco M, et al. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience. Eur J Neurol. 2016;23(6):1020-7. [Crossref]  [PubMed]
  45. Wedatilake Y, Brown RM, McFarland R, Yaplito-Lee J, Morris AA, Champion M, et al. SURF1 deficiency: a multi-centre natural history study. Orphanet J Rare Dis. 2013;8:96. [Crossref]  [PubMed]  [PMC]
  46. Bouillot S, Martin-Négrier ML, Vital A, Ferrer X, Lagueny A, Vincent D, et al. Peripheral neuropathy associated with mitochondrial disorders: 8 cases and review of the literature. J Peripher Nerv Syst. 2002;7(4):213-20. [Crossref]  [PubMed]
  47. Santoro L, Carrozzo R, Malandrini A, Piemonte F, Patrono C, Villanova M, Tessa A, Palmeri S, Bertini E, Santorelli FM. A novel SURF1 mutation results in Leigh syndrome with peripheral neuropathy caused by cytochrome c oxidase deficiency. Neuromuscul Disord. 2000;10(6):450-3. [Crossref]  [PubMed]
  48. Esteitie N, Hinttala R, Wibom R, Nilsson H, Hance N, Naess K, et al. Secondary metabolic effects in complex I deficiency. Ann Neurol. 2005;58(4):544-52. [Crossref]  [PubMed]
  49. Mnatsakanyan L, Ross-Cisneros FN, Carelli V, Wang MY, Sadun AA. Axonal degeneration in peripheral nerves in a case of Leber hereditary optic neuropathy. J Neuroophthalmol. 2011;31(1):6-11. [Crossref]  [PubMed]  [PMC]
  50. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, et al. "Mitochondrial neuropathies": A survey from the large cohort of the Italian Network. Neuromuscul Disord. 2016;26(4-5):272-6. [Crossref]  [PubMed]