Diagnostic and Therapeutic Role of Micrornas in Cancer

tibbibiyolojiozel-2-2-24kapak

Şengül TURALa , Esra TEKCANb
aOndokuz Mayıs University Faculty of Medicine, Department of Medical Biology, Samsun, Türkiye
bOndokuz Mayıs University Faculty of Medicine, Central Laboratuary, Samsun, Türkiye

Tural Ş, Tekcan E. Diagnostic and therapeutic role of micrornas in cancer. In: Yar Sağlam AS, ed. Innovative Approaches in Cancer Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.71-6.

Makale Dili: EN

ABSTRACT
Micro RNAs are single-stranded non-coding RNAs found in eukaryotic cells that can be approximately 20-24 nucleotides in length. miRNAs can regulate the expression of various genes at the post-transcriptional level by binding to specific genes. They are involved in the translational regulation of gene expression. miRNAs play an important role in regulating various developmental processes, cell proliferation and survival processes. Abnormal expression of miRNAs has been found to be associated with development of cancer and other diseases. They may be effective in the pathogenesis of cancer by showing tumor suppressor, oncogenic or both effects. At the same time, miRNA levels have the potential role to be used as biomarkers in the diagnosis of diseases. Therefore, understanding the mechanism of action and biological aspects of miRNAs is very important for the diagnosis and treatment of diseases. This chapter evaluates the role of miRNAs in cancer pathogenesis as well as their importance in diagnosis and treatment processes.

Keywords: Carcinogenesis; MIRN10 microRNA, human; diagnosis; therapy

Referanslar

  1. Kwak PB, Iwasaki S, Tomari Y. The microRNA pathway and cancer. Cancer Sci. 2010;101(11):2309-15. [Crossref]  [PubMed]  [PMC]
  2. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates mikroRNA processing. Nature. 2003;425 (6956):415-9. [Crossref]  [PubMed]
  3. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and post transcriptional gene silencing. Cell. 2005; 123(4):631-40. [Crossref]  [PubMed]
  4. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613-8. [Crossref]  [PubMed]
  5. Cameron JE, Yin Q, Fewell C, Lacey M, McBride J, Wang X, et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J Virol. 2008;82(4):1946-58. [Crossref]  [PubMed]  [PMC]
  6. Gonzalez-Alegre P. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol Ther. 2007;114(1):34-55. [Crossref]  [PubMed]
  7. Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2-3):75-86. [Crossref]  [PubMed]  [PMC]
  8. Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18-31. [Crossref]  [PubMed]  [PMC]
  9. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882-91.
  10. Cowland JB, Hother C, Gronbaek K. MicroRNAs and cancer. APMIS. 2007;115(10):1090-106. [Crossref]  [PubMed]
  11. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Disco. 2017;16:203-22. [Crossref]  [PubMed]
  12. Abd-Aziz N, Kamaruzman NI, Poh CL. Development of Micro- RNAs as Potential Therapeutics against Cancer. J Oncol. 2020;15:8029721. [Crossref]  [PubMed]  [PMC]
  13. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321-33. [Crossref]  [PubMed]  [PMC]
  14. Jun I, Johji, Cancer-associated miRNAs and their therapeutic potential Journal of Human Genetics. 2021;66:937-45. [Crossref]  [PubMed]
  15. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA. 2007;104:16170-5. [Crossref]  [PubMed]  [PMC]
  16. O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106:7113-18. [Crossref]  [PubMed]  [PMC]
  17. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR‐128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle. 2010;9:1037-42. [Crossref]  [PubMed]  [PMC]
  18. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez- Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA. 2008;105:13556-61. [Crossref]  [PubMed]  [PMC]
  19. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108: 3068-71. [Crossref]  [PubMed]
  20. Van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a firstin- man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18:1386-96. [Crossref]  [PubMed]
  21. Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, et al. Clinical development of TargomiRs, a miRNA mimic-based treat-ment for patients with recurrent thoracic cancer. Epigenomics. 2016;8:1079-85. [Crossref]  [PubMed]
  22. Dai W, He J, Zheng L, Bi M, Hu F, Chen M, et al. miR-148b-3p, miR-190b, and miR-429 regulate cell progression and act as potential biomarkers for breast Cancer. Journal of Breast Cancer. 2019;22(2):219-36. [Crossref]  [PubMed]  [PMC]
  23. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research. 2008;14(5):1340-8. [Crossref]  [PubMed]
  24. Hanna JA, Wimberly H, Kumar S, Slack F, Agarwal S, Rimm DL. Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. BioTechniques. 2012;52(4):235-45. [Crossref]  [PubMed]  [PMC]
  25. Zheng JZ, Huang YN, Yao L, Liu YR, Liu S, Hu X, et al. Elevated miR-301a expression indicates a poor prognosis for breast cancer patients. Scientific Reports. 2018;8(1):2225. [Crossref]  [PubMed]  [PMC]
  26. Yau TO, Wu CW, Dong Y, Tang CM, Ng SS, Chan FK, et al. MicroRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. British Journal of Cancer. 2014; 111(9):1765-71. [Crossref]  [PubMed]  [PMC]
  27. Xu M, Kuang Y, Wang M, Han X, Yang Q. A microRNA expression signature as a predictor of survival for colon adenocarcinoma. Neoplasma. 2017;64(1): 56-64. [Crossref]  [PubMed]
  28. Jiang H, Liu J, Chen Y, Ma C, Li B, Hao T. Up-regulation of mir-10b predicate advanced clinicopathological features and liver metastasis in colorectal cancer. Cancer Medicine. 2016;5(10):2932-41. [Crossref]  [PubMed]  [PMC]
  29. Kjaer-Frifeldt S, Hansen TF, Nielsen BS, Joergensen S, Lindebjerg J, Soerensen FB, et al. The prognostic importance of miR-21 in stage II colon cancer: A population-based study. British Journal of Cancer. 2012;107(7): 1169-74. [Crossref]  [PubMed]  [PMC]
  30. Yamazaki N, Koga Y, Taniguchi H, Kojima M, Kanemitsu Y, Saito N, et al. High expression of miR-181c as a predictive marker of recurrence in stage II colorectal cancer. Oncotarget. 2017;8(4):6970-83. [Crossref]  [PubMed]  [PMC]
  31. Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine. Wiley Interdiscip Rev RNA. 2021;12(6):e1662. [Crossref]  [PubMed]  [PMC]
  32. Wang J, Lv N, Lu X, Yuan R, Chen Z, Yu J. Diagnostic and therapeutic role of microRNAs in oral cancer (Review). Oncol Rep. 2021;45(1):58-64. [Crossref]  [PubMed]  [PMC]
  33. Han C, Yu Z, Duan Z, Kan Q. Role of microRNA-1 in human cancer and its therapeutic potentials. Biomed Res Int. 2014;2014:428371. [Crossref]  [PubMed]  [PMC]
  34. Liu X, Zhang X, Zhang Z, Chang J, Wang Z, Wu Z, et al. Plasma microRNA-based signatures to predict 3-year postoperative recurrence risk for stage II and III gastric cancer. International Journal of Cancer. 2017;141(10):2093-102. [Crossref]  [PubMed]
  35. Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA, et al. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res. 2017;2(3-4):143-50. [Crossref]  [PubMed]  [PMC]