Digital Based Application Examples in Cardiovascular Imaging

kardiyoloji ozel 13-4 kapak

Zehra İlke AKYILDIZa, Mehmet UZUNb

aSerbest Hekim,İzmir, TÜRKİYE
bSağlık Bilimleri Üniversitesi İstanbul Sultan 2. Abdülhamid Han Eğitim ve Araştırma Hastanesi, Kardiyoloji Kliniği, İstanbul, TÜRKİYE

ABSTRACT
Technologic advancements in computer science leads our learning and experiences to an adventure through artificial intelligence. In this field, cardiovascular imaging also gets the modifications what comes to. In this review, current artificial intelligence applications in the field of cardiovascular imaging, which include automation, machine learning, and deep learning, will be handled.
Keywords: Cardiac imaging techniques; artificial intelligence; machine learning; deep learning

Referanslar

  1. Leistner DM, Landmesser U. Maintaining Cardiovascular Health in the digital era. Eur Heart J [Internet]. 2019;40(1):9-12. [Crossref]  [PubMed]
  2. Shameer K, Johnson KW, glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart [Internet]. 2018 Jul;104(14):1156-64. [Crossref]  [PubMed]
  3. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson [Internet]. 2013;15(1):91. [Crossref]  [PubMed]  [PMC]
  4. Bellenger N, Davies LC, Francis J, Coats A, Pennell D. Reduction in Sample Size for Studies of Remodeling in Heart Failure by the Use of Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson [Internet]. 2000;2(4):271-8. [Crossref]  [PubMed]
  5. Bhuva AN, Bai W, Lau C, Davies RH, Ye Y, Bulluck H, et al. A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test generalizability and Precision in Imaging Biomarker Analysis. Circ Cardiovasc Imaging [Internet]. 2019;12(10). [Crossref]  [PubMed]
  6. Kido T, Kido T, Nakamura M, Watanabe K, Schmidt M, Forman C, et al. Compressed sensing real-time cine cardiovascular magnetic resonance: accurate assessment of left ventricular function in a single-breath-hold. J Cardiovasc Magn Reson [Internet]. 2016; 18(1):50. [Crossref]  [PubMed]  [PMC]
  7. Yoon J-H, Kim P, Yang Y-J, Park J, Choi BW, Ahn C-B. Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI. Investig Magn Reson Imaging [Internet]. 2019;23(2):114. [Crossref]
  8. Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson [Internet]. 2019;21(1):61. [Crossref]  [PubMed]  [PMC]
  9. Qin C, Schlemper J, Caballero J, Price AN, Hajnal J V., Rueckert D. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging [Internet]. 2019;38(1):280-90. [Crossref]  [PubMed]
  10. Bernard o, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P-A, et al. Deep Learning Techniques for Automatic MRI Cardiac MultiStructures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans Med Imaging [Internet]. 2018;37(11):2514-25. [Crossref]  [PubMed]
  11. Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, et al. Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal [Internet]. 2014;18(7):1115-31. [Crossref]  [PubMed]
  12. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich Mg, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson [Internet]. 2013;15(1):35. [Crossref]  [PubMed]  [PMC]
  13. Petitjean C, Dacher J-N. A review of segmentation methods in short axis cardiac MR images. Med Image Anal [Internet]. 2011;15 (2):169-84. [Crossref]  [PubMed]
  14. Fahmy AS, Rausch J, Neisius U, Chan RH, Maron MS, Appelbaum E, et al. Automated Cardiac MR Scar Quantification in Hypertrophic Cardiomyopathy Using Deep Convolutional Neural Networks. JACC Cardiovasc Imaging [Internet]. 2018;11(12):1917-8. [Crossref]  [PubMed]  [PMC]
  15. Fahmy AS, El-Rewaidy H, Nezafat M, Nakamori S, Nezafat R. Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks. J Cardiovasc Magn Reson [Internet]. 2019;21(1):7. [Crossref]  [PubMed]  [PMC]
  16. Farrag NA, White JA, Ukwatta E. Semi-automated myocardial segmentation of T1-mapping cardiovascular magnetic resonance images using deformable non-rigid registration from CINE images. In: gimi B, Krol A, editors. Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging [Internet]. SPIE; 2019. p. 46. [Crossref]
  17. Chan RH, Maron BJ, olivotto I, Pencina MJ, Assenza gE, Haas T, et al. Prognostic Value of Quantitative Contrast-Enhanced Cardiovascular Magnetic Resonance for the Evaluation of Sudden Death Risk in Patients With Hypertrophic Cardiomyopathy. Circulation [Internet]. 2014;130(6):484-95. [Crossref]  [PubMed]
  18. Larroza A, Materka A, López-Lereu MP, Monmeneu JV, Bodí V, Moratal D. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol [Internet]. 2017;92:78-83. [Crossref]  [PubMed]
  19. Schofield R, ganeshan B, Kozor R, Nasis A, Endozo R, groves A, et al. CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. J Cardiovasc Magn Reson [Internet]. 2016;18(S1):o82. [Crossref]  [PMC]
  20. Lurz P, Luecke C, Eitel I, Föhrenbach F, Frank C, grothoff M, et al. Comprehensive Cardiac Magnetic Resonance Imaging in Patients With Suspected Myocarditis. J Am Coll Cardiol [Internet]. 2016;67(15):1800-11. [Crossref]  [PubMed]
  21. Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, Leeson P. Artificial intelligence and echocardiography. Echo Res Pract [Internet]. 2018;R115-25. [Crossref]  [PubMed]  [PMC]
  22. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digit Med [Internet]. 2018;1(1):6. [Crossref]  [PubMed]  [PMC]
  23. Narula S, Shameer K, Salem omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol [Internet]. 2016;68 (21):2287-95. [Crossref]  [PubMed]
  24. Sengupta PP, Huang Y-M, Bansal M, Ashrafi A, Fisher M, Shameer K, et al. Cognitive Machine-Learning Algorithm for Cardiac Imaging. Circ Cardiovasc Imaging [Internet]. 2016;9(6). [Crossref]  [PubMed]  [PMC]
  25. Mahmoud A, Bansal M, Sengupta PP. New Cardiac Imaging Algorithms to Diagnose Constrictive Pericarditis Versus Restrictive Cardiomyopathy. Curr Cardiol Rep [Internet]. 2017;19(5):43. [Crossref]  [PubMed]
  26. Knackstedt C, Bekkers SCAM, Schummers g, Schreckenberg M, Muraru D, Badano LP, et al. Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain. J Am Coll Cardiol [Internet]. 2015;66(13):1456-66. [Crossref]  [PubMed]
  27. Levy F, Dan Schouver E, Iacuzio L, Civaia F, Rusek S, Dommerc C, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance. Arch Cardiovasc Dis [Internet]. 2017;110(11):580-9. [Crossref]  [PubMed]
  28. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, et al. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging [Internet]. 2016;9(7):769-82. [Crossref]  [PubMed]
  29. Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi M. Three-Dimensional Echocardiographic Assessment of Left Heart Chamber Size and Function with Fully Automated Quantification Software in Patients with Atrial Fibrillation. J Am Soc Echocardiogr [Internet]. 2016;29(10):955-65. [Crossref]  [PubMed]
  30. Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med [Internet]. 2016;73:47-55. [Crossref]  [PubMed]
  31. omar HA, Domingos JS, Patra A, Upton R, Leeson P, Noble JA. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) [Internet]. IEEE; 2018. p. 1195-8. [Crossref]
  32. Raghavendra U, Fujita H, gudigar A, Shetty R, Nayak K, Pai U, et al. Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed Signal Process Control [Internet]. 2018;40: 324-34. [Crossref]
  33. Sanchez-Martinez S, Duchateau N, Erdei T, Fraser Ag, Bijnens BH, Piella g. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal [Internet]. 2017;35:70-82. [Crossref]  [PubMed]
  34. Budoff MJ, Dowe D, Jollis Jg, gitter M, Sutherland J, Halamert E, et al. Diagnostic Performance of 64-Multidetector Row Coronary Computed Tomographic Angiography for Evaluation of Coronary Artery Stenosis in Individuals Without Known Coronary Artery Disease. J Am Coll Cardiol [Internet]. 2008;52(21):1724-32. [Crossref]  [PubMed]
  35. Pugliese F, Hunink MgM, gruszczynska K, Alberghina F, Malagó R, van Pelt N, et al. Learning Curve for Coronary CT Angiography: What Constitutes Sufficient Training? Radiology [Internet]. 2009;251(2):359-68. [Crossref]  [PubMed]
  36. Kang D, Slomka PJ, Nakazato R, Arsanjani R, Cheng VY, Min JK, et al. Automated knowledge-based detection of nonobstructive and obstructive arterial lesions from coronary CT angiography. Med Phys [Internet]. 2013;40(4):041912. [Crossref]  [PubMed]
  37. Kang D, Slomka P, Nakazato R, Cheng VY, Min JK, Li D, et al. Automatic detection of significant and subtle arterial lesions from coronary CT angiography. In: Haynor DR, ourselin S, editors. 2012. p. 831435. [Crossref]
  38. Kang D, Dey D, Slomka PJ, Arsanjani R, Nakazato R, Ko H, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography. J Med Imaging [Internet]. 2015;2(1):014003. [Crossref]  [PubMed]  [PMC]
  39. gaur S, Øvrehus KA, Dey D, Leipsic J, Bøtker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J [Internet]. 2016;37(15): 1220-7. [Crossref]  [PubMed]  [PMC]
  40. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal [Internet]. 2016;34:123-36. [Crossref]  [PubMed]
  41. grbic S, Ionasec R, Vitanovski D, Voigt I, Wang Y, georgescu B, et al. Complete valvular heart apparatus model from 4D cardiac CT. Med Image Anal [Internet]. 2012;16(5):1003- 14. [Crossref]  [PubMed]
  42. Zheng Y, georgescu B, Barbu A, Scheuering M, Comaniciu D. Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes. In: Reinhardt JM, Pluim JPW, editors. 2008. p. 691416. [Crossref]
  43. Ionasec RI, Voigt I, georgescu B, Yang Wang, Houle H, Vega-Higuera F, et al. Patient-Specific Modeling and Quantification of the Aortic and Mitral Valves From 4-D Cardiac CT and TEE. IEEE Trans Med Imaging [Internet]. 2010;29(9):1636-51. [Crossref]  [PubMed]
  44. Yoon YE, Choi JH, Kim JH, Park KW, Doh JH, Kim YJ, et al. Noninvasive Diagnosis of Ischemia-Causing Coronary Stenosis Using CT Angiography. JACC Cardiovasc Imaging [Internet]. 2012;5(11):1088-96. [Crossref]  [PubMed]
  45. Nørgaard BL, Fairbairn TA, Safian RD, Rabbat Mg, Ko B, Jensen JM, et al. Coronary CT Angiography-derived Fractional Flow Reserve Testing in Patients with Stable Coronary Artery Disease: Recommendations on Interpretation and Reporting. Radiol Cardiothorac Imaging [Internet]. 2019;1(5):e190050. [Crossref]  [PubMed]  [PMC]
  46. Itu L, Rapaka S, Passerini T, georgescu B, Schwemmer C, Schoebinger M, et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol [Internet]. 2016;121(1):42-52. [Crossref]  [PubMed]
  47. Motwani M, Dey D, Berman DS, germano g, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J [Internet]. 2016 Jun 1;ehw188. Available from: http://eurheartj.oxfordjournals.org/lookup/doi/10.1093/eurheartj/ehw188 [Crossref]  [PubMed]  [PMC]
  48. Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: The way forward. J Nucl Cardiol [Internet]. 2019;26(5):1755-8. [Crossref]  [PubMed]  [PMC]
  49. Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging [Internet]. 2017;44 (13):2280-9. [Crossref]  [PubMed]  [PMC]
  50. Slomka PJ, Betancur J, Liang JX, otaki Y, Hu L-H, Sharir T, et al. Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). J Nucl Cardiol [Internet]. 2018 Jun 19; Available from: [Link]