DIGITAL CARIES DETECTION METHODS

Merve İşcan Yapar

Atatürk University, Faculty Dentistry, Department of Restorative Dentistry, Erzurum, Türkiye

İşcan Yapar M. Digital Caries Detection Methods. In: Kul E, editor. Perspectives on Digital Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.3141.

ABSTRACT

Dental caries represent one of the most prevalent chronic and multifactorial diseases globally, and their diagnostic methodologies have evolved significantly. Conventional approaches are limited in detecting caries in the early stages, often identifying lesions only when they become clinically appar ent. With the advancement in digital dentistry, methods have been supplanted by more sensitive and patientoriented digital diagnostic technologies. Techniques such as laserbased fluorescence devices, scanning methodologies, electrical conductivity measurements, and the recently developed artificial intelligencebased imaging software facilitate the early detection of caries, enhancing diagnostic ca pabilities. Digital caries diagnostics have improved clinical accuracy and have substantially enhanced patient satisfaction and the efficiency of treatment protocols.

Keywords: Artificial intelligence; Conebeam computed tomography; Fluorescence; Radiography, dental; Transillumination

Referanslar

  1. Atamer E, Topçu FT. Dijital Çürük Teşhis Yöntemleri. Turkiye Klinikleri Restorative Dentistry-Special Topics. 2024;10(2):1-6. [Link]
  2. Laitala ML, Piipari L, Sämpi N, Korhonen M, Pesonen P, Joensuu T, et al. Validity of digital imaging of fiber-optic transillumination in caries detection on proximal tooth surfaces. Int J Dent. 2017;2017:8289636. [Crossref]  [PubMed]  [PMC]
  3. Berg SC, Stahl JM, Lien W, Slack CM, Vandewalle KS. A clinical study comparing digital radiography and near-infrared transillumination in caries detection. J Esthet Restor Dent. 2018;30(1):39-44. [Crossref]  [PubMed]
  4. Akyıldız BM, Sönmez I. Diş çürüğünün erken teşhisinde transillüminasyon yöntemleri. Turkiye Klinikleri Pediatr Dent-Special Topics. 2019;5(3):14-20. [Link]
  5. Marmaneu-Menero A, Iranzo-Cortés JE, Almerich-Torres T, Ortolá-Síscar JC, Montiel-Company JM, et al. Diagnostic validity of digital imaging fiber-optic transillumination (DIFOTI) and near-infrared light transillumination (NILT) for caries in dentine. J Clin Med. 2020;9(2):420. [Crossref]  [PubMed]  [PMC]
  6. Darling CL, Huynh GD, Fried D. Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J Biomed Opt. 2006;11(3):034023. [Crossref]  [PubMed]
  7. Lara-Capi C, Cagetti MG, Lingström P, Lai G, Cocco F, SimarkMattsson C, et al. Digital transillumination in caries detection versus radiographic and clinical methods: an in-vivo study. Dentomaxillofac Radiol. 2017;46(4):20160417. [Crossref]  [PubMed]  [PMC]
  8. Manesh SK, Darling CL, Fried D. Imaging natural and artificial demineralization on dentin surfaces with polarizationsensitive optical coherence tomography. In: Lasers in Dentistry XIV. Proc SPIE. 2008;6843:143-149. [Crossref]  [PubMed]  [PMC]
  9. Shemesh H, van Soest G, Wu MK, Wesselink PR. Diagnosis of vertical root fractures with optical coherence tomography. J Endod. 2008;34(6):739-742. [Crossref]  [PubMed]
  10. Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai JC, Lin KF, et al. Dental optical coherence tomography. Sensors (Basel). 2013;13(7):8928-8949. [Crossref]  [PubMed]  [PMC]
  11. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr Oral Health Rep. 2015;2:73-80. [Crossref]  [PubMed]  [PMC]
  12. Park KJ, Schneider H, Ziebolz D, Krause F, Haak R. Optical coherence tomography to evaluate variance in the extent of carious lesions in depth. Lasers Med Sci. 2018;33:1573-1579. [Crossref]  [PubMed]
  13. Garg A, Biswas G, Saha S. Recent advancements in diagnosis of dental caries. Saarbrücken: LAP LAMBERT Academic Publishing; 2014. [Link]
  14. Edgar HJ, Moes E, Willermet C, Ragsdale CS. Conventional microscopy makes perikymata count and spacing data feasible for large samples. Am J Phys Anthropol. 2021;176(2):321-331. [Crossref]  [PubMed]
  15. Lee HS, Kim SK, Park SW, de Josselin de Jong E, Kwon HK, Jeong SH, et al. Caries detection and quantification around stained pits and fissures in occlusal tooth surfaces with fluorescence. J Biomed Opt. 2018;23(9):091402. [Crossref]
  16. Long F, Ozturk MS, Wolff MS, Intes X, Kotha SP. Dental imaging using mesoscopic fluorescence molecular tomography: an ex vivo feasibility study. Photonics. 2014;1(4):488-502. [Crossref]
  17. Amaechi BT, Higham SM. Quantitative light-induced fluorescence: a potential tool for general dental assessment. Journal of biomedical optics, 2002;7(1):7-13. [Crossref]  [PubMed]
  18. Ko HY, Kang SM, Kim HE, Kwon HK, Kim BI. Validation of quantitative light-induced fluorescence-digital (QLF-D) for the detection of approximal caries in vitro. J Dent. 2015;43(5):568-575. [Crossref]  [PubMed]
  19. Cho KH, Kang CM, Jung HI, Lee HS, Lee K, Lee TY, et al. The diagnostic efficacy of quantitative light-induced fluorescence in detection of dental caries of primary teeth. J Dent. 2021;115:103845. [Crossref]  [PubMed]
  20. Lussi A, Hibst R, Paulus R. DIAGNOdent: An optical method for caries detection. J Dent Res. 2004;83:80-83. [Crossref]  [PubMed]
  21. Kuhnisch J, Bucher K, Henschel V, Hickel R. Reproducibility of DIAGNOdent 2095 and DIAGNOdent Pen measurements: results from an in vitro study on occlusal sites. Eur J Oral Sci. 2007;115(3):206-211. [Crossref]  [PubMed]
  22. Huth KC, Neuhaus KW, Gygax M, Bücher K, Crispin A, Paschos E, Hickel R, Lussi A. Clinical performance of a new laser fluorescence device for detection of occlusal caries lesions in permanent molars. J Dent. 2008;36(12):1033-1040. [Crossref]  [PubMed]
  23. Shi XQ, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries Res. 2000;34(2):152-158. [Crossref]  [PubMed]
  24. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. Eur J Oral Sci. 2001;109(1):14-19. [Crossref]  [PubMed]
  25. Ricketts DN, Kidd EA, Liepeins PJ, Wilson RF. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries. Caries Res. 1996;30(2):148-155. [Crossref]  [PubMed]
  26. Ashley PF, Blinkhorn AS, Davies RM. Occlusal caries diagnosis: An in-vitro histological validation of the electronic caries monitor (ECM) and other methods. J Dent. 1998;26(2):83-88. [Crossref]  [PubMed]
  27. Melo SLS, Belem MDF, Prieto LT, Tabchoury CPM, HaiterNeto F. Comparison of cone beam computed tomography and digital intraoral radiography performance in the detection of artificially induced recurrent caries-like lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;124(3):306-314. [Crossref]  [PubMed]
  28. Valizadeh S, Tavakkoli MA, Vasigh HK, Azizi Z, Zarrabian T. Evaluation of cone beam computed tomography (CBCT) system: comparison with intraoral periapical radiography in proximal caries detection. J Dent Res Dent Clin Dent Prospects. 2012;6(1):1-5. [PubMed]
  29. Ludlow JB, Davies-Ludlow LE, Brooks SL, Howerton WB. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35(4):219-226. [Crossref]  [PubMed]
  30. Abu El-Ela WH, Farid MM, Abou El-Fotouh M. The impact of different dental restorations on detection of proximal caries by cone beam computed tomography. Clin Oral Investig. 2022;26(3):1-8. [Crossref]  [PubMed]
  31. Grande NM, Plotino G, Gambarini G, Testarelli L, D'Ambrosio F, Pecci R, Bedini R. Present and future in the use of micro-CT scanner 3D analysis for the study of dental and root canal morphology. Ann Ist Super Sanita. 2012;48(1):26-34. [PubMed]
  32. Swain MV, Xue J. State of the art of micro-CT applications in dental research. Int J Oral Sci. 2009;1(4):177-188. [Crossref]  [PubMed]  [PMC]
  33. Domark JD, Hatton JF, Benison RP, Hildebolt CF. An ex vivo comparison of digital radiography, cone beam and micro computed tomography in the detection of the number of canals in the mesiobuccal roots of maxillary molars. J Endod. 2013;39(7):901-905. [Crossref]  [PubMed]  [PMC]
  34. Özkan G, Kanlı A, Başeren NM, Arslan U, Tatar İ. Validation of micro-computed tomography for occlusal caries detection: an in vitro study. Braz Oral Res. 2015;29:01-07. [Crossref]  [PubMed]
  35. Ferraz C, Freire AR, Mendonça JS, Fernandes CAO, Cardona JC, Yamauti M. Effectiveness of different mechanical methods on dentin caries removal: micro-CT and digital image evaluation. Oper Dent. 2015;40(3):263-270. [Crossref]  [PubMed]
  36. Ng SY, Ferguson MV, Payne PA, Slater P. Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: A new method for detecting early caries. J Dent. 1988;16(5):201-209. [Crossref]  [PubMed]
  37. Marotti J, Heger S, Tinschert J, Tortamano P, Chuembou F, Radermacher K. Recent advances of ultrasound imaging in dentistry: A review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(6):819-832. [Crossref]  [PubMed]
  38. Yanıkoğlu FÇ, Öztürk F, Hayran O, Analoui M, Stookey GK. Detection of natural white spot lesions by an ultrasonic system. Caries Res. 2000;34(3):225-232. [Crossref]  [PubMed]
  39. Ng SY, Ferguson MWJ, Payne PA, Slater P. Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: A new method for detecting early caries. J Dent. 1998;16(5):201-209. [Crossref]  [PubMed]
  40. Korkut B, Arslantunalı Tağtekin D, Çalışkan Yanıkoğlu F. Early diagnosis of dental caries and new diagnostic methods: QLF, Diagnodent, Electrical Conductance and Ultrasonic System. Int Arch Dent Sci. 2011;32(2):55-67. [Link]
  41. Jeon RJ, Han C, Mandelis A, Sanchez V, Abrams SH. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence. Caries Res. 2004;38(6):497-513. [Crossref]  [PubMed]
  42. Jeon RJ, Hellen A, Matvienko A, Mandelis A, Abrams SH, Amaechi BT. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence. J Biomed Opt. 2008;13(3):034025. [Crossref]  [PubMed]
  43. Iosif L, Murariu-MĂgureanu C, Preoteasa E, Bărbînţă- Pătraşcu ME, Preoteasa CT. Infrared radiation in dentistry; measuring heat emission through passive method of thermography. Rom J Phys. 2021;66(704):1-7. [Link]
  44. Nasution AI, Pankov MN. The Advantage and Basic Approach of Infrared Thermography in Dentistry. J Int Dent Med Res. 2020;13(2):731-737. [Link]
  45. Zakian CM, Taylor AM, Ellwood RP, Pretty IA. Occlusal caries detection by using thermal imaging. J Dent. 2010;38(10):788-795. [Crossref]  [PubMed]
  46. Mertens S, Krois J, Cantu AG, Arsiwala LT, Schwendicke F. Artificial intelligence for caries detection: Randomized trial. J Dent. 2021;115:103849. [Crossref]  [PubMed]
  47. Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent. 2019;91:103226. [Crossref]  [PubMed]
  48. Ahmed WM, Azhari AA, Fawaz KA, Ahmed HM, Alsadah ZM, Majumdar A, Carvalho RM. Artificial intelligence in the detection and classification of dental caries. J Prosthet Dent. 2023. [PubMed]
  49. Li H, Li J, Yun X, Liu X, Fok ASL. Non-destructive examination of interfacial debonding using acoustic emission. Dent Mater. 2011;27(10):964-971. [Crossref]  [PubMed]
  50. Cho NY, Ferracane JL, Lee IB. Acoustic emission analysis of tooth-composite interfacial debonding. J Dent Res. 2013;92(1):76-81. [Crossref]  [PubMed]
  51. Kim RJY, Choi NS, Ferracane J, Lee IB. Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth-composite interfacial de-bonding. Dent Mater. 2014;30(8):876-883. [Crossref]  [PubMed]
  52. Pitts NB, Longbottom C, Hall AF. Diagnostic accuracy of an optimized AC impedance device to aid caries detection and monitoring. Caries Res. 2008;42(3):211-212. [Link]
  53. Huysmans MC, Longbottom C, Pitts NB, Los P, Bruce PG. Impedance spectroscopy of teeth with and without approximal caries lesions: An in vitro study. J Dent Res. 1996;75(11):1871-1878. [Crossref]  [PubMed]
  54. Mortensen D, Dannemand K, Twetman S, Keller MK. Detection of non-cavitated occlusal caries with impedance spectroscopy and laser fluorescence: An in vitro study. Open Dent J. 2014;8:28-32. [Crossref]  [PubMed]  [PMC]
  55. Bala O, Akgül S. Çürük teşhis yöntemleri. Turkiye Klinikleri Restorative Dentistry-Special Topics. 2016;2(1):34-40. [Link]
  56. Teo TK, Ashley PF, Louca C. An in vivo and in vitro investigation of the use of ICDAS, DIAGNOdent pen and CarieScan PRO for the detection and assessment of occlusal caries in primary molar teeth. Clin Oral Investig. 2014;18(3):737-744. [Crossref]  [PubMed]