DIGITAL DENTISTRY APPLICATIONS IN PEDIATRIC DENTISTRY

Fatma Saraç

Atatürk University, Faculty Dentistry, Department of Pediatric Dentistry, Erzurum, Türkiye

Saraç F. Digital Dentistry Applications in Pediatric Dentistry. In: Kul E, editor. Perspectives on Digital Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.95106.

ABSTRACT

In the contemporary era, rapid advancements in technology have resulted in significant changes not only in the field of dentistry but also across various disciplines. In addition to conventional diagnostic and therapeutic methodologies, digital applications offer dentists several advantages. The advent of digital devices and software has precipitated a paradigm shift in the workflow of dentists, resulting in the acceleration of treatment times and the introduction of treatments that are more aesthetic and com patible with anatomical structures. Digital dentistry is an advanced field that focuses on three primary areas: intraoral and extraoral scanning imaging, design planning, and production. Digital radiographs are widely used in the pediatric dentistry, while conebeam computed tomography (CBCT) and in traoral scanners are also used in clinical applications. Digital anesthetics, electronic epex locators, computeraided design/computeraided manufacturing (CAD/CAM) systems, and threedimensional (3D) printers are all actively employed in the clinical practice of pediatric dentistry. CAD/CAM and 3D printing enable a wide range of applications, such as prosthetic treatments, restorative treatments, space mainters, presurgical appliances for cleft lip, and palate patients and splints for dental trau ma. In addition, 3D printing technology enables the production of clear aligners and the development of formulations that allow long and slow release of fluoride. The utilization of contemporary digital technologies, including IOS, CADCAM, and 3D printing, holds considerable promise in enhancing the quality of oral health in pediatric population These technologies facilitate the acquisition of dig ital impressions, the production of diverse pediatric dentistry materials, and the execution of other procedures, contributing to the optimization of dental care for children. In pediatric patients, digital applications shorten the treatment time, facilitate clinical procedures, and increase the treatment com pliance of children. They also play an important role in anxiety control, providing a more comfortable treatment process for pediatric patients.

Keywords: Digital dentistry; Intraoral scanner; CAD/CAM; 3D printer; Pediatric dentistry

Referanslar

  1. Rekow ED. Digital dentistry: The new state of the art-Is it disruptive or destructive? Dental Materials. 2020;36(1):9-24. [Crossref]  [PubMed]
  2. Felemban OM, Alshamrani RM, Aljeddawi DH, Bagher SM. Effect of virtual reality distraction on pain and anxiety during infiltration anesthesia in pediatric patients: a randomized clinical trial. BMC Oral Health. 2021;21(1):321. [Crossref]  [PubMed]  [PMC]
  3. Jayachandran S. Digital Imaging in Dentistry: A Review. Contemp Clin Dent. 2017;8(2):193-4. ccd.ccd_535_17. [Crossref]  [PubMed]  [PMC]
  4. Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B, et al. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatric radiology. 2018;48:308-16. [Crossref]  [PubMed]
  5. Mota de Almeida FJ, Knutsson K, Flygare L. The effect of cone beam CT (CBCT) on therapeutic decision-making in endodontics. Dentomaxillofac Radiol. 2014;43(4):20130137. [Crossref]  [PubMed]  [PMC]
  6. Kumar LV , Sreelakshmi N, Reddy ER, Manjula M, Rani ST, Rajesh A. Clinical evaluation of conventional radiography, radiovisiography, and an electronic apex locator in determining the working length in primary teeth. Pediatric dentistry. 2016;38(1):37-41. jemt.23524 [Link]
  7. Kayabasi M, Oznurhan F. Evaluation of the accuracy of electronic apex locators, cone-beam computed tomography, and radiovisiography in primary teeth: An in vitro study. Microscopy research and technique. 2020;83(11):1330-5. [Crossref]  [PubMed]
  8. Angelo Z, Polyvios C. Alternative practices of achieving anaesthesia for dental procedures: a review. Journal of dental anesthesia and pain medicine. 2018;18(2):79-88. [Crossref]  [PubMed]  [PMC]
  9. Pradhan LR. Digital solutions for pediatric dentistry. Journal of the Indian Society of Pedodontics & Preventive Dentistry. 2024;42. [Crossref]
  10. Eggmann F, Blatz M. Recent advances in intraoral scanners. Journal of Dental Research. 2024;103(13):1349-57. [Crossref]  [PubMed]  [PMC]
  11. Mangano F, Gandolfi A, Luongo G, Logozzo S. Intraoral scanners in dentistry: a review of the current literature. BMC oral health. 2017;17:1-11. [Crossref]  [PubMed]  [PMC]
  12. Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, et al. Intraoral scanner technologies: a review to make a successful impression. Journal of healthcare engineering. 2017;2017(1):8427595. [Crossref]  [PubMed]  [PMC]
  13. Yilmaz H, Aydin MN. Digital versus conventional impression method in children: Comfort, preference and time. International journal of paediatric dentistry. 2019;29(6):728-35. 2019;29(6):728-35. [Crossref]  [PubMed]
  14. Vij AA, Reddy A. Using digital impressions to fabricate space maintainers: A case report. Clinical Case Reports. 2020;8(7):1274-6. [Crossref]  [PubMed]  [PMC]
  15. Davidowitz G, Kotick PG. The use of CAD/CAM in dentistry. Dent Clin North Am. 2011;55(3):559-70, ix. [Crossref]  [PubMed]
  16. Soni HK. Application of CAD-CAM for fabrication of metal-free band and loop space maintainer. Journal of clinical and diagnostic research: JCDR. 2017;11(2):ZD14. [Crossref]  [PubMed]  [PMC]
  17. Panda A. CAD CAM Nasoalveolar Molding and its Recent Advances. Indian Journal of Public Health Research & Development. 2019;10(11). [Crossref]
  18. Dursun E, Monnier-Da Costa A, Moussally C. Chairside CAD/ CAM composite onlays for the restoration of primary molars. Journal of Clinical Pediatric Dentistry. 2018;42(5):349-54. [Crossref]  [PubMed]
  19. Gaurav G, Gupta R, Priyanka G, Neelja G. Digital impressions and immediate chairside zirconia crowns in paediatric dentistry: A case report. Inter Ped Dent Open Acc J. 2021;5:443-46. [Crossref]
  20. Ramanathan M, Panneerselvam E, Raja VKK. 3D planning in mandibular fractures using CAD/CAM surgical splints-a prospective randomized controlled clinical trial. Journal of Cranio-Maxillofacial Surgery. 2020;48(4):405-12. [Crossref]  [PubMed]
  21. Marcel R, Reinhard H, Andreas K. Accuracy of CAD/ CAM-fabricated bite splints: milling vs 3D printing. Clinical oral investigations. 2020;24:4607-15. [Crossref]  [PubMed]  [PMC]
  22. Beretta M, Canova FF, Gianolio A, Mangano A, Paglia M, Colombo S, et al. ZeroExpander: Metal-free automatic palatal expansion for special-needs patients. European journal of paediatric dentistry. 2021;22(2):151-4. [Crossref]  [PubMed]
  23. Sánchez-Riofrío D, Viñas MJ, Ustrell-Torrent JM. CBCT and CAD-CAM technology to design a minimally invasive maxillary expander. BMC Oral Health. 2020;20:1-7. [Crossref]  [PubMed]  [PMC]
  24. Roser C, Hodecker LD, Koebel C, Lux CJ, Ruckes D, Rues S, et al. Mechanical properties of CAD/CAM-fabricated in comparison to conventionally fabricated functional regulator 3 appliances. Scientific Reports. 2021;11(1):14719. [Crossref]  [PubMed]  [PMC]
  25. Halal R, Nohra J, Akel H. Conservative anterior treatment with CAD-CAM technology and polymer-infiltrated ceramic for a child with amelogenesis imperfecta: A 2-year follow-up. The Journal of Prosthetic Dentistry. 2018;119(5):710-2. [Crossref]  [PubMed]
  26. Kessler A, Hickel R, Reymus M. 3D printing in dentistryState of the art. Operative dentistry. 2020;45(1):30-40. [Crossref]  [PubMed]
  27. Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications. Scanning. 2021;2021(1):9950131. [Crossref]  [PubMed]  [PMC]
  28. Espinar C, Della Bona A, Tejada-Casado M, Pulgar R, Pérez MM. Optical behavior of 3D-printed dental restorative resins: Influence of thickness and printing angle. Dental Materials. 2023;39(10):894-902. [Crossref]  [PubMed]
  29. Sahrir CD, Ruslin M, Lee S-Y, Lin W-C. Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns. Journal of Dental Sciences. 2024;19(1):357-63. [Crossref]  [PubMed]  [PMC]
  30. Roychowdhury S, Saha N, Mandal P, Biswas D, Nair V. Application of 3D Printing in Pediatric Dentistry. 2023. [Crossref]
  31. Huang G, Wu L, Hu J, Zhou X, He F, Wan L, et al. Main applications and recent research progresses of additive manufacturing in dentistry. BioMed research international. 2022;2022(1):5530188. [Crossref]  [PubMed]  [PMC]
  32. Marty M, Broutin A, Vergnes JN, Vaysse F. Comparison of student's perceptions between 3D printed models versus series models in paediatric dentistry hands-on session. European Journal of Dental Education. 2019;23(1):68-72. [Crossref]  [PubMed]
  33. Reymus M, Fotiadou C, Hickel R, Diegritz C. 3D-printed model for hands-on training in dental traumatology. International endodontic journal. 2018;51(11):1313-9. iej.12947. [Crossref]  [PubMed]
  34. Hanisch M, Kroeger E, Dekiff M, Timme M, Kleinheinz J, Dirksen D. 3D-printed surgical training model based on real patient situations for dental education. International journal of environmental research and public health. 2020;17(8):2901. [Crossref]  [PubMed]  [PMC]
  35. Höhne C, Schmitter M. 3D printed teeth for the preclinical education of dental students. Journal of dental education. 2019;83(9):1100-6. [Crossref]  [PubMed]
  36. Hanafi A, Donnermeyer D, Schäfer E, Bürklein S. Perception of a modular 3D print model in undergraduate endodontic education. International Endodontic Journal. 2020;53(7):1007-16. [Crossref]  [PubMed]
  37. Van Der Meer WJ, Vissink A, Ng YL, Gulabivala K. 3D Computer aided treatment planning in endodontics. Journal of dentistry. 2016;45:67-72. [Crossref]  [PubMed]
  38. Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone research. 2017;5(1):1-19. [Crossref]  [PubMed]  [PMC]
  39. Dhanotra KG, Bhatia R. Digitainers-Digital space maintainers: A review. International journal of clinical pediatric dentistry. 2021;14(Suppl 1):S69. [Crossref]  [PubMed]  [PMC]
  40. Yangdol P, Kalra N, Tyagi R, Khatri A, Sabherwal P, Goyal T. Three-dimensional Printing Technology: Patient-friendly and Time-saving Approach for Space Management in an Autistic Child in COVID-19 Times. International Journal of Clinical Pediatric Dentistry. 2023;16(Suppl 3):321. [Crossref]  [PubMed]  [PMC]
  41. Tokuc M, Yilmaz H. Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers. International Journal of Paediatric Dentistry. 2022;32(5):764-71. [Crossref]  [PubMed]
  42. Kessler A, Kapor S, Erdelt K, Hickel R, Edelhoff D, Syrek A, et al. Two-body wear and fracture behaviour of an experimental paediatric composite crown in comparison to zirconia and stainless steel crowns dependent on the cementation mode. Dental Materials. 2021;37(2):264-71. [Crossref]  [PubMed]
  43. Krishnamurthy DM, Singh R, Mistry G. Interim three-dimensional printed overlay prosthesis for an adolescent patient with oligodontia. The journal of indian prosthodontic society. 2021;21(3):304-7. [Crossref]  [PubMed]  [PMC]
  44. Xia J, Li Y, Cai D, Shi X, Zhao S, Jiang Q, et al. Direct resin composite restoration of maxillary central incisors using a 3D-printed template: two clinical cases. BMC Oral Health. 2018;18(1):158. [Crossref]  [PubMed]  [PMC]
  45. Alrashdi M, Ardoin J, Liu JA. Zirconia crowns for children: A systematic review. International journal of paediatric dentistry. 2022;32(1):66-81. [Crossref]  [PubMed]
  46. Kim N, Kim H, Kim I-H, Lee J, Lee KE, Lee H-S, et al. Novel 3D printed resin crowns for primary molars: in vitro study of fracture resistance, biaxial flexural strength, and dynamic mechanical analysis. Children. 2022;9(10):1445. [Crossref]  [PubMed]  [PMC]
  47. Al-Rimawi A, EzEldeen M, Schneider D, Politis C, Jacobs R. 3D printed temporary veneer restoring autotransplanted teeth in children: design and concept validation ex vivo. International Journal of Environmental Research and Public Health. 2019;16(3):496. [Crossref]  [PubMed]  [PMC]
  48. Obregon F, Vaquette C, Ivanovski S, Hutmacher D, Bertassoni L. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. Journal of dental research. 2015;94(9_suppl):143S-52S. [Crossref]  [PubMed]
  49. Du Y, Yang D, Pang Y, Liu C, Zhang K. Application of CAD and 3D printing in the treatment of pediatric multiple mandible fractures: A case report. Medicine: Case Reports and Study Protocols. 2021;2(5):e0095. MD9.0000000000000095. [Crossref]
  50. Zhang J, Yang Y, Han X, Lan T, Bi F, Qiao X, et al. The application of a new clear removable appliance with an occlusal splint in early anterior crossbite. BMC oral health. 2021;21:1-11. [Crossref]  [PubMed]  [PMC]
  51. Shaheen SR, Sridevi E, Sankar AS, Krishna V, Sridhar M, Sankar KS. Contemporary era of Three-dimensional printing in pediatric dentistry: An overview. Journal of Oral Research and Review. 2023;15(1):72-9. [Crossref]
  52. Ahsanuddin S, Ahmed M, Slowikowski L, Heitzler J. Recent advances in nasoalveolar molding therapy using 3D technology. Craniomaxillofacial Trauma & Reconstruction. 2022;15(4):387-96. [Crossref]  [PubMed]  [PMC]