DIGITAL DEVELOPMENTS IN ORTHODONTICS

Nurhan Bayındır Durna1
Vildan Uka2

1Atatürk University, Faculty Dentistry, Department of Orthodontics, Erzurum, Türkiye
2Atatürk University, Faculty Dentistry, Department of Orthodontics, Erzurum, Türkiye

Bayındır Durna N, uka v. Digital Developments in Orthodontics. In: Kul E, editor. Perspectives on Digital Dentistry. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.7793.

ABSTRACT

The digital transformation in orthodontics has led to profound changes, reshaping the overall frame work of diagnostic and treatment processes while introducing a revolutionary and innovative per spective to clinical applications. Digitalization enables a more patientcentered and precise approach in every aspect of orthodontics. The capabilities offered by digital technologies facilitate the rapid and accurate recording of both intraoral structures and surrounding tissues. In this context, threedi mensional (3D) models obtained through digital scanning systems have substituted traditional plaster models, offering significant advantages such as ease of storage, improved accessibility, and efficient data sharing via modern communication tools. Advanced imaging techniques, including conebeam computed tomography (CBCT) and facial scanning technologies, allow for a detailed evaluation of dental, skeletal, and soft tissue structures, enabling a more precise functional and aesthetic analysis. Additionally, digital analysis tools and artificial intelligenceassisted systems play a prominent role in technological advancements by enhancing the accuracy of cephalometric measurements, optimizing treatment planning efficiency, and improving diagnostic processes in orthodontics. Moreover, digital photography and digital occlusion recording methods play a crucial role in organizing patient records and monitoring treatment progress. Digitalization in treatment applications manifests through innova tive approaches such as clear aligners and CAD/CAM systems. Clear aligners provide an aesthetic and comfortable treatment option, whereas CAD/CAM technology enhances precision and efficiency in the fabrication of customized brackets and orthodontic appliances. Through virtual steps, these technolo gies facilitate the simulation of various treatment options, making treatment outcomes more predict able for clinicians and patients. Digitalization offers numerous advantages, including enhanced patient comfort, high sensitivity, extensive data storage capabilities, shorter treatment durations, and the visu alization of treatment outcomes, which can improve patient motivation. However, in comparison with the mentioned advantages, digitalization also presents particular challenges, such as the complexity of the learning curve, high costs, and biological limitations. In the future, with the integration of artificial intelligence, 4D imaging, and nextgeneration technologies, digitalization is expected to bring further innovations to diagnosis, treatment planning, and clinical applications in orthodontics. These advance ments are critically important for accelerating treatment processes and promoting a patientcentered approach in orthodontic care.

Keywords: Orthodontics; Digital technology; Dental technology

Referanslar

  1. Panayi NC. In-house three-dimensional designing and printing customized brackets. J World Fed Orthod. 2022;11(6):190-196. [Crossref]  [PubMed]
  2. Ramadan AK, Kamal A, Ibrahim M, Hatem M, Roshdy Y, Fayed MMS. Digital Orthodontics: An overview. MSA Dental Journal. 2023;2(2):49-53. [Crossref]
  3. Elnagar MH, Aronovich S, Kusnoto B. Digital Workflow for Combined Orthodontics and Orthognathic Surgery. Oral Maxillofac Surg Clin North Am. 2020;32(1):1-14. [Crossref]  [PubMed]
  4. Jain P, Gupta M. Digitization in Dentistry. 1st ed. Switzerland: Springer. 2021:15. digitization-in-dentistry-clinical-applications-1sted- 2021-3030651681-9783030651688.html [Crossref]
  5. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod, 2014;48(6):337-347. [Link]
  6. Gulati P, Bagga DK, Agrawal P, Nanda M, Shahi PK, Singh A. Digitization in Orthodontics: An Overview. Nat. Vol. Essent. Oil. 2021;8(5):4457-4463. [Link]
  7. Westerlund A, Tancredi W, Ransjö M, Bresin A, Psonis S, Torgersson O. Digital casts in orthodontics: a comparison of 4 software systems. Am J Orthod Dentofacial Orthop, 2015;147(4):509-516. [Crossref]  [PubMed]
  8. Coimbra, C. Scanner 3D. Faculdade de Ciências e Tecnologia da Universidade de Coimbra e Formador do CENFIM. www.cenfim.pt/doc/artigos/scanner_3d.pdf.
  9. Lecocq G. Digital impression-taking: Fundamentals and benefits in orthodontics. Int Orthod, 2016;14(2):184-194. [Crossref]
  10. Alcan T, Ceylanoğlu C, Baysal B. The relationship between digital model accuracy and time-dependent deformation of alginate impressions. Angle Orthod. 2009;79(1):30-36. [Crossref]  [PubMed]
  11. Correia GD, Habib, FA, Vogel CJ. Tooth-size discrepancy: a comparison between manual and digital methods. Dental Press J Orthod. 2014;19(4):107-113. [Crossref]  [PubMed]  [PMC]
  12. Kim J, Heo G, Lagravère MO. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography. Angle Orthod, 2014;84(3);443-450. [Crossref]  [PubMed]  [PMC]
  13. Sousa MV, Vasconcelos EC, Janson G, Garib D, Pinzan A. Accuracy and reproducibility of 3-dimensional digital model measurements. Am J Orthod Dentofacial Orthop. 2012;142(2):269-273. [Crossref]  [PubMed]
  14. Da Silveira AC, Daw JrJL, Kusnoto B, Evans C, Cohen M. Craniofacial applications of three-dimensional laser surface scanning. J Craniofac Surg, 2003;14(4):449-456. [Crossref]  [PubMed]
  15. Soncul M, Bamber M. The optical surface scan as an alternative to the cephalograph for soft tissue analysis for orthognathic surgery. Int J Adult Orthodon Orthognath Surg. 1999;14(4):277-283. [PubMed]
  16. Djordjevic J, Toma AM, Zhurov AI, Richmond S. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning. Eur J Orthod, 2014;36(2):125-132. [Crossref]  [PubMed]  [PMC]
  17. Kau CH, Richmond S, Zhurov AI, Knox J, Chestnutt I, Hartles F, et al. Reliability of measuring facial morphology with a 3-dimensional laser scanning system. Am J Orthod Dentofacial Orthop. 2005;128(4):424-430. [Crossref]  [PubMed]
  18. Kau CH, Richmond S, Incrapera A, English J, Xia JJ. (). Three-dimensional surface acquisition systems for the study of facial morphology and their application to maxillofacial surgery. Int J Med Robot. 2007;3(2):97-110. [Crossref]  [PubMed]
  19. Burke PH, Beard FH. Stereophotogrammetry of the face. A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod. 1967;53(10):769-782. [Crossref]  [PubMed]
  20. Aynechi N, Larson BE, Leon-Salazar V, Beiraghi S. Accuracy and precision of a 3D anthropometric facial analysis with and without landmark labeling before image acquisition. Angle Orthod. 2011;81(2):245-252. [Crossref]  [PubMed]  [PMC]
  21. Plooij JM, Maal TJ, Haers P, Borstlap WA, Kuijpers-Jagtman AM, Bergé SJ. (). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg. 2011;40(4):341-352. [Crossref]  [PubMed]
  22. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18(4):740-747. [Crossref]  [PubMed]
  23. Karatas OH, Toy E. Three-dimensional imaging techniques: A literature review. Eur J Dent. 2014;8(1):132-140. [Crossref]  [PubMed]  [PMC]
  24. Pakbaznejad Esmaeili E, Ilo AM, Waltimo-Sirén J, Ekholm M. Minimum size and positioning of imaging field for CBCT scans of impacted maxillary canines. Clin Oral Investig. 2020;24(2):897-905. [Crossref]  [PubMed]
  25. Ng WL, Cunningham A, Pandis N, Bister D, Seehra J. Impacted maxillary canine: Assessment of prevalence, severity and location of root resorption on maxillary incisors: A retrospective CBCT study. Int Orthod. 2024;22(3):100890. [Crossref]  [PubMed]
  26. Peralta-Mamani M, Rubira CM, López-López J, Honório HM, Rubira-Bullen IR. CBCT vs panoramic radiography in assessment of impacted upper canine and root resorption of the adjacent teeth: A systematic review and meta-analysis. J Clin Exp Dent. 2024;16(2):e198-e222. [Crossref]  [PubMed]  [PMC]
  27. Aboalnaga AA, Amer NM, Alhammadi MS, Fayed MMS. Positional and dimensional TMJ characteristics in different temporomandibular disorders: A cross-sectional comparative study. Cranio. 2024;42(5):611-619. [Crossref]  [PubMed]
  28. Yang R, Lee LM, Zhu Y, Jia WY, Yao W, Yu Y, et al. Correlation Between Temporomandibular Joint Disc Perforation and Degenerative Joint Changes: A CBCT and Clinical Analysis. J Oral Rehabil, 2024;51(12):2675-2682. [Crossref]  [PubMed]
  29. Zhang Y, Zheng J, Wu Q, Jiang T, Xiao H, Du Y, et al. Three-dimensional spatial analysis of temporomandibular joint in adolescent Class II division 1 malocclusion patients: comparison of Twin-Block and clear functional aligner. Head Face Med. 2024;20(1):4. [Crossref]  [PubMed]  [PMC]
  30. De Riu G, Virdis PI, Meloni SM, Lumbau A, Vaira LA. Accuracy of computer-assisted orthognathic surgery. J Craniomaxillofac Surg, 2018;46(2):293-298. [Crossref]  [PubMed]
  31. Ho CT, Lin HH, Liou EJ, Lo LJ. Three-dimensional surgical simulation improves the planning for correction of facial prognathism and asymmetry: A qualitative and quantitative study. Sci Rep. 2017;7:40423. [Crossref]  [PubMed]  [PMC]
  32. Abdalla Y, Sonnesen L. Association between orthodontic treatment and upper airway changes in children assessed with cone-beam computed tomography (CBCT): A systematic review. J Oral Rehabil. 2024;51(10):2195-2208. [Crossref]  [PubMed]
  33. DiCosimo C, Alsulaiman AA, Shah C, Motro M, Will LA, Parsi GK. Analysis of nasal airway symmetry and upper airway changes after rapid maxillary expansion. Am J Orthod Dentofacial Orthop. 2021;160(5):695-704. [Crossref]  [PubMed]
  34. Erdur EA, Yıldırım M, Karatas RMC, Akin M. Effects of symmetric and asymmetric rapid maxillary expansion treatments on pharyngeal airway and sinus volume. Angle Orthod. 2020;90(3):425-431. [Crossref]  [PubMed]  [PMC]
  35. Bazargani F, Lund H, Magnuson A, Ludwig B. Skeletal and dentoalveolar effects using tooth-borne and toothboneborne RME appliances: a randomized controlled trial with 1-year follow-up. Eur J Orthod. 2021;43(3):245-253. [Crossref]  [PubMed]
  36. Bazargani F, Knode V, Plaksin A, Magnuson A, Ludwig B. Three-dimensional comparison of tooth-borne and toothboneborne RME appliances: a randomized controlled trial with 5-year follow-up. Eur J Orthod. 2023;45(6):690-702. [Crossref]  [PubMed]  [PMC]
  37. Jia H, Zhuang L, Zhang N, Bian Y, Li S. Comparison of skeletal maxillary transverse deficiency treated by microimplantassisted rapid palatal expansion and tooth-borne expansion during the post-pubertal growth spurt stage. Angle Orthod. 2021;91(1):36-45. [Crossref]  [PubMed]  [PMC]
  38. Fechteler P, Eisert P, Rurainsky J. Fast and high resolution 3D face scanning. 2007 IEEE International Conference on Image Processing; 2007; San Antonio, TX, USA. IEEE; 2007;3:III-81. [Crossref]
  39. Ferrario VF, Sforza C, Poggio CE, Serrao G. Facial three-dimensional morphometry. Am J Orthod Dentofacial Orthop. 1996;109(1);86-93. [Crossref]  [PubMed]
  40. Paddock SW, Eliceiri KW. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol. 2014;1075:9-47. [Crossref]  [PubMed]
  41. Ras F, Habets LL , van Ginkel FC, Prahl-Andersen B. Quantification of facial morphology using stereophotogrammetry-- demonstration of a new concept. J Dent. 1996;24(5):369-374. [Crossref]  [PubMed]
  42. Ritman EL. Micro-computed tomography-current status and developments. Annu Rev Biomed Eng. 2004;6:185-208. [Crossref]  [PubMed]
  43. Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72(1):75-80. [PubMed]
  44. Edelman RR, Hesselink J, Zlatkin M. Clinical magnetic resonance imaging: 3 volume set. 3rd ed. Saunders; 2005. [Link]
  45. Herman GT. Fundamentals of computerized tomography: Image reconstruction from projection. 2nd ed. New York: Springer. 2009:1-17. [Link]
  46. Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics: part I. J Orthod. 2004;31(1):62-70. [Crossref]  [PubMed]
  47. Singh IJ, Savara BS. Norms of size and annual increments of seven anatomical measures of maxillae in girls from three to sixteen years of age. Angle Orthod. 1966;36(4):312-324. [Crossref]
  48. Subramanyan K, Dean D. Scanned bi-orthogonal radiographs as a source for 3D cephalometric data. Medical Imaging. Image Processing. 1996;2710:717-724. [Crossref]
  49. Broadbent BH. A new x-ray technique and its application to orthodontia. The Angle Orthodontist. 1931;1(2):45-66. [Link]
  50. Kasinathan G, Kommi PB, Kumar SM, Yashwant A, Arani N, Sabapathy S. Evaluation of Soft Tissue Landmark Reliability between Manual and Computerized Plotting Methods. J Contemp Dent Pract. 2017;18(4):317-321. [Crossref]  [PubMed]
  51. Farronato G, Garagiola U, Dominici A, Periti G, de Nardi S, Carletti V, Farronato D. "Ten-point" 3D cephalometric analysis using low-dosage cone beam computed tomography. Prog Orthod. 2010;11(1):2-12. [Crossref]  [PubMed]
  52. Farronato G, Salvadori S, Nolet F, Zoia A, Farronato D. Assessment of interand intra-operator cephalometric tracings on cone beam CT radiographs: comparison of the precision of the cone beam CT versus the latero-lateral radiograph tracing. Prog Orthod. 2014;15:1. [Crossref]  [PubMed]  [PMC]
  53. Nordblom NF, Büttner M, Schwendicke F. Artificial Intelligence in Orthodontics: Critical Review. J Dent Res. 2024;103(6):577-584. [Crossref]  [PubMed]  [PMC]
  54. Nabiyev V. Yapay Zeka (Artificial Intelligence). 1.Baskı. Ankara: Seçkin Yayıncılık; 2021. [Link]
  55. Liu J, Zhang C, Shan Z. Application of Artificial Intelligence in Orthodontics: Current State and Future Perspectives. Healthcare. 2023;11(20):2760. [Crossref]  [PubMed]  [PMC]
  56. Khanagar SB, Al-Ehaideb A, Maganur P C, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry
  57. Kim MJ, Liu Y, Oh SH, Ahn HW, Kim SH, Nelson G. Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using conebeam computed tomographysynthesized posteroanterior cephalometric images. Korean J Orthod. 2021;51(2):77-85. [Crossref]  [PubMed]  [PMC]
  58. Takeda S, Mine Y, Yoshimi Y, Ito S, Tanimoto K, Murayama T. Landmark annotation and mandibular lateral deviation analysis of posteroanterior cephalograms using a convolutional neural network. J Dent Sci. 2021;16(3):957-963. [Crossref]  [PubMed]  [PMC]
  59. Talaat S, Kaboudan A, Talaat W, Kusnoto B, Sanchez F, Elnagar MH, et al. The validity of an artificial intelligence application for assessment of orthodontic treatment need from clinical images. Seminars in Orthodontics. 2021;27(2):164-171. [Crossref]
  60. Ryu J, Kim YH, Kim TW, Jung SK. Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs. Sci Rep. 2023;13(1):5177. [Crossref]  [PubMed]  [PMC]
  61. Bapelle M, Dubromez J, Savoldelli C, Tillier Y, Ehrmann E. Modjaw® device: Analysis of mandibular kinematics recorded for a group of asymptomatic subjects. CRANIO®, 42(5):483-489. [Crossref]  [PubMed]
  62. Nagy Z, Mikolicz A, Vag J. In-vitro accuracy of a novel jaw-tracking technology. J Dent. 2024;138:104730. [Crossref]  [PubMed]
  63. Revilla-León M, Kois DE, Zeitler JM, Att W, Kois JC. An overview of the digital occlusion technologies: Intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices. J Esthet Restor Dent. 2023;35(5):735-744. [Crossref]  [PubMed]
  64. Samawi S. A short guide to clinical digital photography in orthodontics. Jordan: Sdoc. 2008:12-16. [Link]
  65. Sandler J, Murray A. Digital photography in orthodontics. J Orthod. 2001;28(3):197-201. [Crossref]  [PubMed]
  66. Palomo JM, Wolf GR, Hans MG. Use of digital photography in the Case orthodontic clinic. Am J Orthod Dentofacial Orthop. 2004;126(3):381-385. [Crossref]  [PubMed]
  67. Buonamici F, Carfagni M, Furferi R, Governi L, Lapini A, Volpe Y. Reverse engineering of mechanical parts: A templatebased approach. J. Comput. Des. Eng. 2018;5(2), 145-159. [Crossref]
  68. Wakjira Y, Kurukkal NS, Lemu HG. Reverse engineering in medical application: literature review, proof of concept and future perspectives. Sci Rep. 2024;14(1):23621. [Crossref]  [PubMed]  [PMC]
  69. Balamurugan P, Selvakumar N. Development of patient specific dental implant using 3D printing. J. Ambient Intell. Humaniz. Comput. 2021;12(3), 3549-3558. [Crossref]
  70. Fiorillo L, Cicciù M, D'Amico C, Mauceri R, Oteri G, Cervino G. Finite Element Method and Von Mises Investigation on Bone Response to Dynamic Stress with a Novel Conical Dental Implant Connection. Biomed Res Int. 2020: 2976067. [Crossref]  [PubMed]  [PMC]
  71. Iturrate M, Minguez R, Pradies G, Solaberrieta E. Obtaining reliable intraoral digital scans for an implant-supported complete-arch prosthesis: A dental technique. J Prosthet Dent. 2019;121(2):237-241. [Crossref]  [PubMed]
  72. Raspudic V, Marusic M. Redesign of impression trays using reverse engineering and finite element analysis. Proceedings of the 32nd International DAAAM Virtual Symposium ''Intelligent Manufacturing & Automation''; 2021 28-29th October; Vienna, Austria. Annals of DAAAM & Proceedings 2021. [Crossref]
  73. Ronsivalle V, Ruiz F, Lo Giudice A, Carli E, Venezia P, Isola G, et al. From Reverse Engineering Software to CADCAM Systems: How Digital Environment Has Influenced the Clinical Applications in Modern Dentistry and Orthodontics. Applied Sciences. 2023;13(8), 4986. [Crossref]
  74. Cha BK , Lee JY , Bae SH, Park DI. Preliminary study of future orthodontic model analysis: the orthodontic application of 3D reverse engineering technologies. J Kor Dent Assoc. 2002;40(2):107-117. [Link]
  75. Cha BK, Lee JY, Jost-Brinkmann PG, Yoshida N. Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur. J. Orthod. 2007;29(4):325-331. [Crossref]  [PubMed]
  76. Groth C, Kravitz ND, Jones PE, Graham JW, Redmond WR. Three-dimensional printing technology. J Clin Orthod. 2014;48(8):475-485. [Link]
  77. Nasef AA, El-Beialy AR, Mostafa YA. Virtual techniques for designing and fabricating a retainer. Am J Orthod Dentofacial Orthop. 2014;146(3):394-398. [Crossref]  [PubMed]
  78. Sassani F, Elmajian A, Roberts S. Computer-assisted fabrication of orthodontic appliances: considering the possibilities. J Am Dent Assoc. 1995;126(9):1296-1300. [Crossref]  [PubMed]
  79. Wiechmann D, Rummel V, Thalheim A, Simon JS, Wiechmann L. Customized brackets and archwires for lingual orthodontic treatment. Am J Orthod Dentofacial Orthop. 2003;124(5):593-599. [Crossref]  [PubMed]
  80. Kihara T, Tanimoto K, Michida M, Yoshimi Y, Nagasaki T, Murayama T, et al. Construction of orthodontic setup models on a computer. Am J Orthod Dentofacial Orthop. 2012;141(6):806-813. [Crossref]  [PubMed]
  81. Lauren M, McIntyre FA. new computer-assisted method for design and fabrication of occlusal splints. Am J Orthod Dentofacial Orthop. 2008;133(4 Suppl): S130-135. [Crossref]  [PubMed]
  82. Lin Y, Zhang S, Chen X, Wang C. A novel method in the design and fabrication of dental splints based on 3D simulation and rapid prototyping technology. Int. J. Adv. Manuf. Technol. 2006;28:919-922. [Crossref]
  83. Farronato G, Santamaria G, Cressoni P, Falzone D, Colombo M. The digital-titanium Herbst. J. Clin. Orthod. 2011;45(5), 263-288.
  84. Al Mortadi N, Eggbeer D, Lewis J, Williams RJ. CAD/ CAM/AM applications in the manufacture of dental appliances. Am J Orthod Dentofacial Orthop. 2012;142(5):727-733. [Crossref]  [PubMed]
  85. Sánchez-Riofrío D, Viñas MJ, Ustrell-Torrent JM. CBCT and CAD-CAM technology to design a minimally invasive maxillary expander. BMC Oral Health. 2020;20(1):303. [Crossref]  [PubMed]  [PMC]
  86. Wiechman, D. Lingual orthodontics (part 2): archwire fabrication. J Orofac Orthop. 1999;60(6):416-426. [Crossref]  [PubMed]
  87. Weissheimer A, Kravitz ND, Pham J, Tong H, Akyalcin S. Innovative Orthodontic-Restorative Treatment With Customized CAD/CAM Smartwires. J Esthet Restor Dent. 2024. [Crossref]  [PubMed]
  88. Gracco A, Tracey S. The insignia system of customized orthodontics. J Clin Orthod. 2011;45(8):442-451; quiz 467-44893. [Link]
  89. Nguyen T, Jackson T. 3D technologies for precision in orthodontics. Semin. Orthod. 2018;24(4):386-392. [Crossref]
  90. Nawrocka A, Lukomska-Szymanska M. The Indirect Bonding Technique in Orthodontics-A Narrative Literature Review. Materials (Basel). 2020;13(4). [Crossref]  [PubMed]  [PMC]
  91. Ciuffolo F, Epifania E, Duranti G, De Luca V, Raviglia D, Rezza S, et al. Rapid prototyping: a new method of preparing trays for indirect bonding. Am J Orthod Dentofacial Orthop. 2006;129(1):75-77. [Crossref]  [PubMed]
  92. Son KH, Park JW, Lee DK, Kim KD, Baek SH. New virtual orthodontic treatment system for indirect bonding using the stereolithographic technique. Korean J Orthod. 2011;41(2):138-146. [Crossref]
  93. El-Timamy AM, El-Sharaby FA, Eid FH, Mostafa YA. Three-dimensional imaging for indirect-direct bonding. Am J Orthod Dentofacial Orthop. 2016;149(6):928-931. [Crossref]  [PubMed]
  94. Graf S. Clinical guidelines for direct printed metal orthodontic appliances. Semin. Orthod. 2018;24. [Crossref]
  95. Wong BH. Invisalign A to Z. Am J Orthod Dentofacial Orthop. 2002;121(5):540-541. [Crossref]  [PubMed]
  96. Akdeniz BS, Aykaç V, Turgut M, Çetin S. Digital dental models in orthodontics: A review. Journal of experimental and clinical medicine 2022;39(1):250-255. [Crossref]
  97. Barreto MS, Faber J, Vogel CJ, Araujo TM. Reliability of digital orthodontic setups. Angle Orthod. 2016;86(2):255-259. [Crossref]  [PubMed]  [PMC]
  98. Sereewisai B, Chintavalakorn R, Santiwong P, Nakornnoi T, Neoh SP, Sipiyaruk K. The accuracy of virtual setup in simulating treatment outcomes in orthodontic practice: a systematic review. BDJ open. 2023;9(1):41. [Crossref]  [PubMed]  [PMC]
  99. de Waard O, Baan F, Bruggink R, Bronkhorst EM, KuijpersJagtman AM, Ongkosuwito EM. The Prediction Accuracy of Digital Orthodontic Setups for the Orthodontic Phase before Orthognathic Surgery. J. Clin. Med. 2022;11(20):6141. [Crossref]  [PubMed]  [PMC]
  100. Camardella LT, Rothier EK, Vilella OV, Ongkosuwito EM, Breuning KH. Virtual setup: application in orthodontic practice. Virtuelles Setup: Anwendung in der kieferorthopädischen Praxis. J Orofac Orthop. 2016;77(6):409-419. [Crossref]  [PubMed]
  101. Horton HM, Miller JR, Gaillard PR, Larson BE. Technique comparison for efficient orthodontic tooth measurements using digital models. Angle Orthod. 2010;80(2):254-261. [Crossref]  [PubMed]  [PMC]
  102. Farronato G, Giannini L, Galbiati G, Pisani L, Mortellaro C, Maspero C. Verification of the reliability of the three-dimensional virtual presurgical orthodontic diagnostic protocol. J Craniofac Surg. 2014;25(6):2013-2016. [Crossref]  [PubMed]
  103. Rheude B, Lionel Sadowsky P, Ferriera A, Jacobson A. An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod. 2005;75(3):300-304. [Link]
  104. Peluso MJ, Josell SD, Levine SW, Lorei BJ., September). Digital models: an introduction. Semin. Orthod. 2004;10(3):226-238. [Crossref]
  105. Ho CT, Lin HH, Lo LJ. Intraoral Scanning and Setting Up the Digital Final Occlusion in Three-Dimensional Planning of Orthognathic Surgery: Its Comparison with the Dental Model Approach. Plast. Reconst. Surg. 2019;143(5):1027e-1036e. [Crossref]  [PubMed]
  106. Pellitteri F, Albertini P, Vogrig A, Spedicato GA, Siciliani G, Lombardo L. Comparative analysis of intraoral scanners accuracy using 3D software: an in vivo study. Prog. Orthod. 2022;23(1):21. [Crossref]  [PubMed]  [PMC]
  107. Woo H, Jha N, Kim YJ, Sung SJ. Evaluating the accuracy of automated orthodontic digital setup models. Semin. Orthod. 2023;29(1):60-67. [Crossref]
  108. Camardella LT, Vilella OV, Breuning KH, de Assis Ribeiro Carvalho F, Kuijpers-Jagtman AM, Ongkosuwito EM. The influence of the model superimposition method on the assessment of accuracy and predictability of setup models. Der Einfluss der Modellüberlagerungsmethode auf die Bewertung der Genauigkeit und Vorhersagbarkeit von SetupModellen. J Orofac Orthop. 2021;82(3):175-186. [Crossref]  [PubMed]
  109. Sorour H, Fadia D, Ferguson DJ, Makki L, Adel S, Hansa I, et al. Efficacy of Anterior Tooth Simulations with Clear Aligner Therapy-A Retrospective Cohort study of Invisalign and Flash Aligner Systems. Open Dent. J. 2022;16(1):1-8. [Crossref]
  110. Baan F, de Waard O, Bruggink R, Xi T, Ongkosuwito EM, Maal TJJ. Virtual setup in orthodontics: planning and evaluation. Clin. Oral Investig. 2020;24(7): 2385-2393. [Crossref]  [PubMed]
  111. Alkhayer A, Piffkó J, Lippold C, Segatto E. Accuracy of virtual planning in orthognathic surgery: a systematic review. Head Face Med. 2020;16(1):34. s13005-020-00250-2 [Crossref]  [PubMed]  [PMC]