Digital Jaw Tracking Systems
Mevsim Yayman
Assistant Professor, DDS, Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Ankara, Türkiye
ABSTRACT
Stability and proper motion dynamics during functional movements are extremely important for the healthy functioning of the stomatognathic system. For many years, mandibular motion analysis has been an integral part of the diagnostic and therapeutic process in prosthodontics, orthodontics and surgery. In the era of digital dentistry, technologies for jaw tracking systems are evolving. Over the past years, many experimental or commercially available technologies have been introduced to integrate patient-specific mandibular mo-tion recordings into computer-aided design and computer-aided manufacturing (CAD/CAM) software. These technologies include ultrasonic systems, electromagnetic sensors, optoelectronic systems and photometric devices, video X-ray fluoroscopy, four-dimensional computed tomography (4D-CT), four-dimensional cone beam computed tomography (4D-CBCT), artificial intelligence algorithms and intraoral scanners (IOSs). The aim of this review is to investigate the commercially available and experimental (non-commercially available) digital jaw tracking systems and to provide an informative overview for physicians.
Keywords: Digital Technology, Dentistry, Dental Occlusion
Citation
Referanslar
- He S, Kau CH, Liao L, Kinderknecht K, Ow A, Saleh TA. The use of a dynamic real-time jaw tracking device and cone beam computed tomography simulation. Ann Maxillofac Surg. 2016;6(1):113-9. [Crossref]
- Jakubowska S, Szerszeń MP, Kostrzewa-Janicka J. Jaw motion tracking systems-literature review. Protet Stomatol. 2023;73(1):18-28. [Crossref]
- Woodford SC, Robinson DL, Mehl A, Lee PVS, Ackland DC. Measurement of normal and pathological mandibular and temporomandibular joint kinematics: A systematic review. J Biomech. 2020;111:109994. [Crossref]
- Tecco S, Nota A, Pittari L, Clerici C, Mangano F, Gherlone EF. Full-Digital Workflow for TMDs Management: A Case Series. Healthcare. 2023;11(6):790-811. [Crossref]
- Li L, Sun Y, Wang Y, Li W, Dai N, Tian S, et al. Accuracy of a Novel Virtual Articulator for Recording Three-Dimensional Dentition. Int J Prosthodont. 2020;33(4):441-51. [Crossref]
- Revilla‐León M, Kois DE, Zeitler JM, Att W, Kois JC. An overview of the digital occlusion technologies: Intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices. J Esthet Restor Dent. 2023;35(5):735-44. [Crossref]
- Kwon JH, Im S, Chang M, Kim JE, Shim JS. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner. J Prosthodont Res. 2019;63(1):115-9. [Crossref]
- Kordass B, Bernhardt O, Ratzmann A, Hugger S, Hugger A. Standard and limit values of mandibular condylar and incisal movement capacity. Int J Comput Dent. 2014;17(1):9-20.
- Baeyens J, Gilomen H, Erdmann B, Clijsen R, Cabri J, Vissers D. In vivo measurement of the 3D kinematics of the temporomandibular joint using miniaturized electromagnetic trackers: technical report. Med Biol Eng Comput. 2013;51:479-84. [Crossref]
- Lepidi L, Grande F, Baldassarre G, Suriano C, Li J, Catapano S. Preliminary clinical study of the accuracy of a digital axiographic recording system for the assessment of sagittal condylar inclination. J Dent. 2023;135:104583. [Crossref]
- Bedrossian EA, Bedrossian E, Kois JC, Revilla-Leon M. Use of an optical jaw-tracking system to record mandibular motion for treatment planning and designing interim and definitive prostheses: A dental technique. J Prosthet Dent. 2022. [Crossref]
- Chen CC, Lin CC, Hsieh HP, Fu YC, Chen YJ, Lu TW. In vivo three-dimensional mandibular kinematics and functional point trajectories during temporomandibular activities using 3d fluoroscopy. Dentomaxillofac Radiol. 2021;50(2):20190464. [Crossref]
- Huys SE, Keelson B, de Brucker Y, Van Gompel G, de Mey J, Vander Sloten J, et al. The use of dynamic CT imaging for tracking mandibular movements in a phantom. Biomed Phys Eng Express. 2022;9(1):015002. [Crossref]
- Aslanidou K, Kau CH, Vlachos C, Saleh TA. The fabrication of a customized occlusal splint based on the merging of dynamic jaw tracking records, cone beam computed tomography, and CAD-CAM digital impression. J Orthod Sci. 2017;6(3):104-9. [Crossref]
- Tian SK, Dai N, Li LL, Li WW, Sun YC, Cheng XS. Three-dimensional mandibular motion trajectory-tracking system based on BP neural network. Math Biosci Eng. 2020;17(5):5709-26. [Crossref]
- Mazzetto MO, Anacleto MA, Rodrigues CA, Braganca RM, Paiva GD, Valencise Magri L. Comparison of mandibular movements in TMD by means of a 3D ultrasonic system and digital caliper rule. Cranio. 2017;35(1):46-51. [Crossref]
- Kijak E, Lietz-Kijak D, Sliwinski Z, Fraczak B. Muscle activity in the course of rehabilitation of masticatory motor system functional disorders. Postepy Hig Med Dosw. 2013;67:507-16. [Crossref]
- Kijak E, Lietz-Kijak D, Fraczak B, Sliwinski Z, Margielewicz J. Assessment of the TMJ Dysfunction Using the Computerized Facebow Analysis of Selected Parameters. Biomed Res Int. 2015;2015:508069. [Crossref]
- Walczynska-Dragon K, Baron S, Nitecka-Buchta A, Tkacz E. Correlation between TMD and cervical spine pain and mobility: is the whole body balance TMJ related? Biomed Res Int. 2014;2014:582414. [Crossref]
- Hugger A, Bölöni E, Berntien U, Stüttgen U. Accuracy of an ultrasonic measurement system for jaw movement recording. J Dent Res. 2001;80:1226.
- Kordass B, Ruge S, Quooss A, Hugger A, Mundt T. Occlusion of artificial teeth in partial dentures in the "chewing center"--first exploratory population-based evaluations. Int J Comput Dent. 2014;17(3):185-95.
- Peng T, Yang Z, Ma T, Zhang M, Ren G. Comparative evaluation of the volume of occlusal adjustment of repositioning occlusal devices designed by using an average value digital articulator and the jaw movement analyzer. J Prosthet Dent. 2023. [Crossref]
- Sippy VR, Hegde C, Shetty G. A study to evaluate the influence of condylar and incisal guidance in canine guided and group function occlusal schemes. J Indian Prosthodont Soc. 2021;21(3):256-61. [Crossref]
- Mage K, Celic R, Cimic S, Dulcic N. Comparison of Parameters for Programming Adjustable Dental Articulators by Using Wax Eccentric Records and Arcus Digma Device. Acta Stomatol Croat. 2019;53(3):213-23. [Crossref]
- Barbezat C, Srinivasan M, Schimmel M, Hori K, Tamine K, Ono T, et al. Impact of lingual plates on the interocclusal free way space: a pilot study. J Oral Rehabil. 2012;39(10):761-6. [Crossref]
- Gawriolek K, Azer SS, Gawriolek M, Piotrowski PR. Mandibular function after Myorelaxation Therapy in temporomandibular disorders. Adv Med Sci. 2015;60(1):6-12. [Crossref]
- Goob J, Erdelt K, Schweiger J, Duc JMP, Schubert O, Güth JF. Reproducibility of a magnet-based jaw motion analysis system. Int J Comput Dent. 2020;23(1):39-48.
- Lewis RP, Buschang PH, Throckmorton GS. Sex differences in mandibular movements during opening and closing. Am J Orthod Dentofacial Orthop. 2001;120(3):294-303. [Crossref]
- Amhamed M, Whittle T, Maulina T, Gal J, Akhter R, Murray G. Effect of experimental anterior temporalis muscle pain on jaw movements. J Oral Rehabil. 2016;43(12):889-99. [Crossref]
- De Felicio CM, Mapelli A, Sidequersky FV, Tartaglia GM, Sforza C. Mandibular kinematics and masticatory muscles EMG in patients with short lasting TMD of mild-moderate severity. J Electromyogr Kinesiol. 2013;23(3):627-33. [Crossref]
- Ugolini A, Mapelli A, Segu M, Galante D, Sidequersky FV, Sforza C. Kinematic analysis of mandibular motion before and after orthognathic surgery for skeletal Class III malocclusion: A pilot study. Cranio. 2017;35(2):94-100. [Crossref]
- Ettlin DA, Mang H, Colombo V, Palla S, Gallo L. Stereometric assessment of TMJ space variation by occlusal splints. J Dent Res. 2008;87(9):877-81. [Crossref]
- Chen CC, Chen YJ, Chen SC, Lin HS, Lu TW. Evaluation of soft-tissue artifacts when using anatomical and technical markers to measure mandibular motion. J Dent Sci. 2011;6(2):95-101. [Crossref]
- Revilla-Leon M, Zeitler JM, Gomez-Polo M, Kois JC. Utilizing additively manufactured custom devices to record mandibular motion by using optical jaw tracking systems: A dental technique. J Prosthet Dent. 2022. Published online: 21 May 2022 https://doi.org/10.1016/j.prosdent.2022.03.035 [Crossref]
- ARCUSdigma 3 User Manual 2021 [Available from: [Link]
- Carossa M, Cavagnetto D, Ceruti P, Mussano F, Carossa S. Individual mandibular movement registration and reproduction using an optoeletronic jaw movement analyzer and a dedicated robot: a dental technique. BMC Oral Health. 2020;20(1):271-8. [Crossref]
- Nigam AA, Lee JD, Lee SJ. A clinical comparison of sagittal condylar inclination and Bennett angle derived from a conventional electronic tracking device and an optical jaw tracking device. J Prosthet Dent. 2023. [Crossref]
- Bapelle M, Dubromez J, Savoldelli C, Tillier Y, Ehrmann E. Modjaw® device: Analysis of mandibular kinematics recorded for a group of asymptomatic subjects. Cranio. 2021:1-7. [Crossref]
- Revilla-Leon M, Agustin-Panadero R, Zeitler JM, Barmak AB, Yilmaz B, Kois JC, et al. Differences in maxillomandibular relationship recorded at centric relation when using a conventional method, four intraoral scanners, and a jaw tracking system: A clinical study. J Prosthet Dent. 2023. [Crossref]
- Revilla-Leon M, Fernandez-Estevan L, Barmak AB, Kois JC, Perez-Barquero JA. Accuracy of the maxillomandibular relationship at centric relation position recorded by using 3 different intraoral scanners with or without an optical jaw tracking system: An in vivo pilot study. J Dent. 2023;132:104478. [Crossref]
- Chen CC, Lin CC, Chen YJ, Hong SW, Lu TW. A method for measuring three-dimensional mandibular kinematics in vivo using single-plane fluoroscopy. Dentomaxillofac Radiol. 2013;42(1):95958184. [Crossref]
- Chen CC, Lin CC, Lu TW, Chiang H, Chen YJ. Feasibility of differential quantification of 3D temporomandibular kinematics during various oral activities using a cone-beam computed tomography-based 3D fluoroscopic method. J Dent Sci. 2013;8(2):151-9. [Crossref]
- van der Helm HC, Dieters AJA, Dijkstra PU, van der Meer WJ, Kuijpers-Jagtman AM. Exploring the Validity of an Optoelectronic Integrated Cone Beam Computed Tomography Jaw Tracking System. J Clin Med. 2023;12(12):1-11. [Crossref]
- Aslanidou K, Xie R, Christou T, Lamani E, Kau CH. Evaluation of temporomandibular joint function after orthognathic surgery using a jaw tracker. J Orthod. 2020;47(2):140-8. [Crossref]
- Rahman F, Femiano F, Louis PJ, Kau CH. An Evaluation of Jaw Tracking Movements in Patients with Total Joint Replacements versus a Control Group. Medicina (Kaunas). 2022;58(6):738. [Crossref]
- Merema BB, Witjes MJ, Van Bakelen NB, Kraeima J, Spijkervet FK. Four-Dimensional Determination of the Patient-Specific Centre of Rotation for Total Temporomandibular Joint Replacements: Following the Groningen Principle. J Pers Med. 2022;12(9):1439. [Crossref]
- Kim JE, Park JH, Moon HS, Shim JS. Complete assessment of occlusal dynamics and establishment of a digital workflow by using target tracking with a three-dimensional facial scanner. J Prosthodont Res. 2019;63(1):120-4. [Crossref]
- Zambrana N, Sesma N, Fomenko I, Dakir EI, Pieralli S. Jaw tracking integration to the virtual patient: A 4D dynamic approach. J Prosthet Dent. 2022;131(3):370-4. [Crossref]
- Guo J, Chen J, Wang J, Ren G, Tian Q, Guo C. EMG-assisted forward dynamics simulation of subject-specific mandible musculoskeletal system. J Biomech. 2022;139:111143. [Crossref]
- Chang AR, Han JJ, Kim DS, Yi WJ, Hwang SJ. Evaluation of intra-articular distance narrowing during temporomandibular joint movement in patients with facial asymmetry using 3-dimensional computed tomography image and tracking camera system. J Craniomaxillofac Surg. 2015;43(3):342-8. [Crossref]
- Chou TH, Liao SW, Huang JX, Huang HY, Vu-Dinh H, Yau HT. Virtual Dental Articulation Using Computed Tomography Data and Motion Tracking. Bioengineering (Basel). 2023;10(11):1248. [Crossref]
- Li W, Li L, Wang Y, Sun Y, Xie Q. Accuracy of recording edentulous jaw relations by using an optical jaw tracking system: An in vitro study. Int J Prosthodont. 2022;35(3):302- 10. [Crossref]
- Li W, Chen H, Wang Y, Xie Q, Sun Y. Digital Determination and Recording of Edentulous Maxillomandibular Relationship Using a Jaw Movement Tracking System. J Prosthodont. 2022;31(8):663-72. [Crossref]
- Farook TH, Rashid F, Alam MK, Dudley J. Variables influencing the device-dependent approaches in digitally analysing jaw movement-a systematic review. Clin Oral Investig. 2023;27(2):489-504. [Crossref]