Diş Çürüğünün Biyokimyası

Deniz Yanık

Bu bölüm çürük oluşumuna, etyopatogenzine, çürük oluşumunu kolaylaştıran faktörlere, demineralizasyon ve remineralizasyon dengesine, biyofilmin biyokimyasına odaklanmıştır. Çürük oluşumunu, mine ve dentindeki ilerleyiş farklılıkları ve pulpada oluşturduğu değişiklikler kapsamında açıklamaktadır. Tüm bu süreçlerin öncesinde de sağlıklı mine ve dentinin biyokimyasal yapısını, organik ve inorganik bileşenlerini, özelliklerini ve fonksiyonlarını açıklamaktadır. Çürük, geniş kitleleri ilgilendiren yaygın bir halk sağlığı problemidir ve diş hekimliği kliniğindeki en yüksek prevlansa sahip kronik hastalıklardan biridir. Çürük etyopatogenezi pek çok biyolojik faktörden etkilendiği gibi sosyoekonomik seviye ile de yakın temas içindedir. Ne yazık ki bu hastalık, fizyolojik olarak rejenerasyon kapasitesine sahip olmayan bir doku olan mineyi yıkarak ilerler. Daha da kötüsü herhangi bir tedavi ya da ilaç, kayıp mine dokusunu yerine koyamaz, klinik tedaviler sadece kayıp dokunun yapay materyallerle restore edilmesini içerir. Bu yüzden çürüğün etkilediği diş dokularının biyokimyasal yapısını ve metabolizmalarını bilmek, koruyucu önlemlerin ve ilgili ajanların geliştirilmesi için yönlendirici olacaktır.

Diş Çürüğünün Biyokimyası bölümü ayrıca, minenin ve dentin-pulpa kompleksinin rejenerasyonu için gelecekteki klinik uygulamalara ve tedavilere temel oluşturabilecek biyokimyasal açıdan zengin bilimsel bilginin önemini vurgular.

Referanslar

  1. Ballal, V., Rao, S., Bagheri, A., Bhat, V., Attin, T., & Zehnder, M. (2017). MMP-9 in dentinal fuid correlates with caries lesion depth. Caries Research, 51(5), 460-465. [Crossref]
  2. Basavaraju, M., Sisnity, V. S., Palaparthy, R., & Addanki, P. K. (2016). Quorum quenching: signal jamming in dental plaque bioflms. Journal of Dental Sciences, 11(4), 349-352. [Crossref]
  3. Besic, F. C., Bayard, M., Wiemann Jr, M. R., & Burrell, K. H. (1975). Composition and structure of dental enamel: elemental composition and crystalline structure of dental enamel as they relate to its solubility. Journal of the American Dental Association, 91(3), 594-601. [Crossref]
  4. Brudevold, F., Aasenden, R., Srinivasian, B. N., & Bakhos, Y. (1977). Lead in enamel and saliva, dental caries and the use of enamel biopsies for measuring past exposure to lead. Journal of Dental Research, 56(10), 1165- 1171. [Crossref]
  5. Buzalaf, M. A. R., de Moraes Italiani, F., Kato, M. T., Martinhon, C. C. R., & Magalhães, A. C. (2006). Effect of iron on inhibition of acid demineralisation of bovine dental enamel in vitro. Archives of Oral Biology, 51(10), 844-848. [Crossref]
  6. Carrilho, M. R., Scaffa, P., Oliveira, V., Tjäderhane, L., Tersariol, I. L., Pashley, D. H., ... Nascimento, F. D. (2020). Insights into cathepsin-B activity in mature dentin matrix. Archives of Oral Biology, 117, 104830. [Crossref]
  7. Chang, M. C., Chen, J. H., Lee, H. N., Chen, S. Y., Zhong, B. H., Dhingra, K., ... & Jeng, J. H. (2023). Inducing cathepsin L expression/production, lysosomal activation, and autophagy of human dental pulp cells by dentin bonding agents, camphorquinone and BisGMA and the related mechanisms. Biomaterials Advances, 145, 213253. [Crossref]
  8. Chardin, H., Septier, D., & Goldberg, M. (1990). Visualization of glycosaminoglycans in rat incisor predentin and dentin with cetylpyridinium chloride-glutaraldehyde as fxative. Journal of Histochemistry & Cytochemistry, 38(6), 885-894. [Crossref]
  9. Chaussain, C., Boukpessi, T., Khaddam, M., Tjaderhane, L., George, A., & Menashi, S. (2013). Dentin matrix degradation by host matrix metalloproteinases: inhibition and clinical perspectives toward regeneration. Frontiers in Physiology, 4, 308. [Crossref]
  10. Dai, X. F., Ten Cate, A. R., & Limeback, H. (1991). The extent and distribution of intratubular collagen fbrils in human dentine. Archives of Oral Biology, 36(10), 775-778. [Crossref]
  11. Darling AI (1970). Dentin caries. In: Thoma's oral pathology. 6th ed. Carlin RJ, Goldman HM, editors. St. Louis: C.V. Mosby, pp. 285-286
  12. de Dios Teruel, J., Alcolea, A., Hernández, A., & Ruiz, A. J. O. (2015). Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Archives of Oral Biology, 60(5), 768-775. [Crossref]
  13. De Menezes Oliveira, M. A. H., Torres, C. P., Gomes-Silva, J. M., Chinelatti, M. A., De Menezes, F. C. H., Palma-Dibb, R. G., & Borsatto, M. C. (2010). Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microscopy Research and Technique, 73(5), 572-577. [Crossref]
  14. de Moraes, I. Q. S., do Nascimento, T. G., da Silva, A. T., de Lira, L. M. S. S., Parolia, A., & de Moraes Porto, I. C. C. (2020). Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion. Restorative Dentistry & Endodontics, 45(3). [Crossref]
  15. De Sousa, F. B., Soares, J. D., & Vianna, S. S. (2013). Natural enamel caries: a comparative histological study on biochemical volumes. Caries Research, 47(3), 183-192. [Crossref]
  16. Dissanayake, S. S., Ekambaram, M., Li, K. C., Harris, P. W., & Brimble, M. A. (2020). Identifcation of key functional motifs of native amelogenin protein for dental enamel remineralisation. Molecules, 25(18), 4214. [Crossref]
  17. Duruibe, Ogwuegbu, & Egwurugwu. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112-118.
  18. Eng, M. A. S. D., Vakhnovetsky, J., Vakhnovetsky, A., Morgano, S. M. (2022). Functional Role of Inorganic Trace Elements in Dentin Apatite Tissue-Part III: Se, F, Ag, and B. Journal of Trace Elements in Medicine and Biology, 126990. [Crossref]
  19. Francis MD, Briner WW. The development and regression of hypomineralized areas of rat molars. Archives of Oral Biology 1966;11(3):349-54. [Crossref]
  20. Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S. N., Asgharian, M., Vali, H., & Tamimi, F. (2013). Trace elements can infuence the physical properties of tooth enamel. SpringerPlus, 2, 1-12. [Crossref]
  21. Glimcher MJ (2006) Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. In: Sahai N, Schoonen MAA (eds) Medical Mineralogy and Geochemistry, Reviews in Mineralogy & Geochemistry 64, pp 223-282. [Crossref]
  22. Hargreaves, K. M., Goodis, H. E., & Tay, F. R. (Eds.). (2012). Seltzer and Bender's dental pulp. Batavia, IL, USA: Quintessence Pub.
  23. Jiang H, Liu XY, Lim CT, Hsu CY: Ordering of self-assembled nanobiominerals in correlation to mechanical properties of hard tissues. Appl Phys Lett 2005, 86: 163901. [Crossref]
  24. Kidd EA, Richards A, Thylstrup A, et al. The susceptibility of 'young' and 'old' human enamel to artifcial caries in vitro. Caries Research 1984;18(3):226-30. [Crossref]
  25. Kometani, M., Nonomura, K., Tomoo, T., & Niwa, S. (2010). Hurdles in the drug discovery of cathepsin K inhibitors. Current Topics in Medicinal Chemistry, 10(7), 733-744. [Crossref]
  26. Kotsanos N, Darling AI. Infuence of posteruptive age of enamel on its susceptibility to artifcial caries. Caries Research 1991;25(4):241-50. [Crossref]
  27. Lappalainen, R., & Knuuttila, M. (1981). The concentrations of Pb, Cu, Co and Ni in extracted permanent teeth related to donors' age and elements in the soil. Acta Odontologica Scandinavica, 39(3), 163-167. [Crossref]
  28. Lewis, D. D., Shaffer, J. R., Feingold, E., Cooper, M., Vanyukov, M. M., Maher, B. S., ... & Marazita, M. L. (2017). Genetic association of MMP10, MMP14, and MMP16 with dental caries. International Journal of Dentistry, 2017. [Crossref]
  29. Linde, A. (1985). Session II: cells and extracellular matrices of the dental pulp-CT Hanks, chairman: the extracellular matrix of the dental pulp and dentin. Journal of Dental Research, 64(4), 523-529. [Crossref]
  30. Matos, A. B., Reis, M., Alania, Y., Wu, C. D., Li, W., & Bedran-Russo, A. K. (2022). Comparison of collagen features of distinct types of caries-affected dentin. Journal of Dentistry, 127, 104310. [Crossref]
  31. Matuszczak, E., Cwalina, I., Tylicka, M., Wawrzyn, K., Nowosielska, M., Sankiewicz, A., ... & Hermanowicz, A. (2020). Levels of Selected Matrix Metalloproteinases-MMP-1, MMP-2 and Fibronectin in the Saliva of Patients Planned for Endodontic Treatment or Surgical Extraction. Journal of Clinical Medicine, 9(12), 3971. [Crossref]
  32. Mu, H., Dong, Z., Wang, Y., Chu, Q., Gao, Y., Wang, A. & Gao, Y. (2022). Odontogenesis-Associated Phosphoprotein (ODAPH) Overexpression in Ameloblasts Disrupts Enamel Formation via Inducing Abnormal Mineralization of Enamel in Secretory Stage. Calcifed Tissue International, 111(6), 611-621. [Crossref]
  33. Özok, A. R., Wu, M. K., Ten Cate, J. M., & Wesselink, P. R. (2004). Effect of dentinal fuid composition on dentin demineralization in vitro. Journal of Dental Research, 83(11), 849-853. [Crossref]
  34. Pajor, K., Pajchel, L., & Kolmas, J. (2019). Hydroxyapatite and fuorapatite in conservative dentistry and oral implantology-A review. Materials, 12(17), 2683. [Crossref]
  35. Palosaari, H., Wahlgren, J., Larmas, M., Rönkä, H., Sorsa, T., Salo, T., & Tjäderhane, L. (2000). The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulated by TGF-β1. Journal of Dental Research, 79(1), 77-84. [Crossref]
  36. Putt, M. S., & Kleber, C. J. (1985). Dissolution studies of human enamel treated with aluminum solutions. Journal of Dental Research, 64(3), 437-440. [Crossref]
  37. Retana-Lobo, C., Ramírez-Mora, T., Murillo-Gómez, F., Maria Guerreiro-Tanomaru, J., Tanomaru-Filho, M., & Reyes-Carmona, J. (2022). Final irrigation protocols affect radicular dentin DMP1-CT expression, microhardness, and biochemical composition. Clinical Oral Investigations, 26(8), 5491-5501. [Crossref]
  38. Robinson, C., Shore, R. C., Brookes, S. J., Strafford, S., Wood, S. R., & Kirkham, J. (2000). The chemistry of enamel caries. Critical Reviews in Oral Biology & Medicine, 11(4), 481-495. [Crossref]
  39. Saghiri, M. A., Vakhnovetsky, J., & Vakhnovetsky, A. (2022). Functional role of inorganic trace elements in dentin apatite-Part II: Copper, manganese, silicon, and lithium. Journal of Trace Elements in Medicine and Biology, 126995. [Crossref]
  40. Saghiri, M. A., Vakhnovetsky, J., Vakhnovetsky, A., Ghobrial, M., Nath, D., & Morgano, S. M. (2022). Functional role of inorganic trace elements in dentin apatite tissue-Part 1: Mg, Sr, Zn, and Fe. Journal of Trace Elements in Medicine and Biology, 126932. [Crossref]
  41. Shinno, Y., Ishimoto, T., Saito, M., Uemura, R., Arino, M., Marumo, K., ... & Hayashi, M. (2016). Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Scientifc Reports, 6(1), 19849. [Crossref]
  42. Tersariol, I. L., Geraldeli, S., Minciotti, C. L., Nascimento, F. D., Pääkkönen, V., Martins, M. T., ... & Tjäderhane, L. (2010). Cysteine cathepsins in human dentin-pulp complex. Journal of Endodontics, 36(3), 475-481. [Crossref]
  43. Tjäderhane, L., Buzalaf, M. A. R., Carrilho, M., & Chaussain, C. (2015). Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries research, 49(3), 193-208. [Crossref]
  44. Tjäderhane, L., Carrilho, M. R., Breschi, L., Tay, F. R., & Pashley, D. H. (2009). Dentin basic structure and composition-an overview. Endodontic Topics, 20(1), 3-29. [Crossref]
  45. Wang, D., Deng, J., Deng, X., Fang, C., Zhang, X., & Yang, P. (2020). Controlling enamel remineralization by amyloid like amelogenin mimics. Advanced Materials, 32(31), 2002080. [Crossref]
  46. Wang, J., Nonami, T., & Yubata, K. (2008). Syntheses, structures and photophysical properties of iron containing hydroxyapatite prepared by a modifed pseudo-body solution. Journal of Materials Science: Materials in Medicine, 19, 2663-2667. [Crossref]
  47. Weerakoon, A. T., Condon, N., Cox, T. R., Sexton, C., Cooper, C., Meyers, I. A., ... & Symons, A. L. (2022). Dynamic dentin: A quantitative microscopic assessment of age and spatial changes to matrix architecture, peritubular dentin, and collagens types I and III. Journal of Structural Biology, 214(4), 107899. [Crossref]
  48. Whyte, M. P., Amalnath, S. D., McAlister, W. H., McKee, M. D., Veis, D. J., Huskey, M., ... & Mumm, S. (2020). Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: The frst digenic SIBLING protein osteopathy? Bone, 132, 115190. [Crossref]
  49. Wilmers, J., & Bargmann, S. (2020). Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomaterialia, 107, 1-24. [Crossref]
  50. Wojtas, M., Lausch, A. J., & Sone, E. D. (2020). Glycosaminoglycans accelerate biomimetic collagen mineralization in a tissue-based in vitro model. Proceedings of the National Academy of Sciences, 117(23), 12636- 12642. [Crossref]
  51. Zamojda, E., Orywal, K., Mroczko, B., & Sierpinska, T. (2023). Trace Elements in Dental Enamel Can Be a Potential Factor of Advanced Tooth Wear. Minerals, 13(1), 125. [Crossref]
  52. Zhang, J., Wang, J., Ma, C., & Lu, J. (2020). Hydroxyapatite formation coexists with amyloid-like self-assembly of human amelogenin. International Journal of Molecular Sciences, 21(8), 2946. [Crossref]