Diş Embriyolojisinin Biyokimyası

oral-biyokimya

Deniz Yanık

Bu bölüm diş ve çevre dokularının gelişimini ve bu süreçte rol oynayan molekülleri, sinyal yolaklarını ve altında yatan genetik mekanizmaları ele almaktadır. Dişlerin embriyolojik gelişim evrelerini oluşturan tomurcuk, takke ve çan evrelerindeki süreçlerin tasviri ve bu süreçlerin biyokimyasal mekanizmalarının tanımlanmasıyla başlayan bu bölüm; mine, dentin, pulpa, sement ve periodontal ligamentin embriyolojisine doku bazında odaklanarak süreci biyokimyasal çerçevede açıklamaktadır. Ardından kök oluşumu ve sürmesinin moleküler ve genetik düzeyi incelenmekte ve son olarak ise diş morfolojisindeki gelişim bozukluklarına değinilmektedir. Embriyolojik süreçlerdeki biyokimyasal mekanizmalar dişin sağlıklı bir şekilde gelişip fonksiyon gösterebilmesi için hayati öneme sahiptir. Bu yüzden, bu genetik ve moleküler mekanizmaların ayrıntılı bir şekilde bilinmesi gelecekte hem morfolojik bozuklukların önlenmesi hem de diş dokusunun rejenerasyonu için kat edilmesi gereken bilimsel yolda önemli bir yapı taşı oluşturacaktır.

Diş Embriyolojisinin Biyokimyası bölümü de ilgili konulardaki bilimsel altyapının geliştirilmesini amaçlamıştır.

Referanslar

  1. Abbarin, N., San Miguel, S., Holcroft, J., Iwasaki, K., & Ganss, B. (2015). The enamel protein amelotin is a promoter of hydroxyapatite mineralization. Journal of Bone and Mineral Research, 30(5), 775-785.
  2. Arzate, H., Zeichner-David, M., & Mercado-Celis, G. (2015). Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontology 2000, 67(1), 211-233.
  3. Bae, J. M., Clarke, J. C., Rashid, H., Adhami, M. D., McCullough, K., Scott, J. S., ... & Javed, A. (2018). Speci-ficity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. Journal of Bone and Mineral Research, 33(6), 1126-1140.
  4. Bai, Y., Yu, Z., Ackerman, L., Zhang, Y., Bonde, J., Li, W., ... & Habelitz, S. (2020). Protein nanoribbons temp-late enamel mineralization. Proceedings of the National Academy of Sciences, 117(32), 19201-19208.
  5. Bartlett, J. D., Smith, C. E., Hu, Y., Ikeda, A., Strauss, M., Liang, T., ... & Hu, J. C. C. (2021). MMP20-genera-ted amelogenin cleavage products prevent formation of fan-shaped enamel malformations. Scientific Reports, 11(1), 10570.
  6. Bei, M. (2009). Molecular genetics of tooth development. Current Opinion in Genetics & Development, 19(5), 504-510.
  7. Bei, M., & Maas, R. (1998). FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development, 125(21), 4325-4333.
  8. Beniash, E., Stifler, C. A., Sun, C. Y., Jung, G. S., Qin, Z., Buehler, M. J., & Gilbert, P. U. (2019). The hidden structure of human enamel. Nature Communications, 10(1), 4383.
  9. Bobek, J., Oralova, V., Kratochvilova, A., Zvackova, I., Lesot, H., & Matalova, E. (2019). Tuftelin and HIFs expression in osteogenesis. Histochemistry and Cell Biology, 152, 355-363.
  10. Chamila Prageeth Pandula, P. K., Samaranayake, L. P., Jin, L. J., & Zhang, C. (2014). Periodontal ligament stem cells: an update and perspectives. Journal of Investigative and Clinical Dentistry, 5(2), 81-90.
  11. Chavez, M. B., Kramer, K., Chu, E. Y., Thumbigere-Math, V., & Foster, B. L. (2020). Insights into dental mineralization from three heritable mineralization disorders. Journal of Structural Biology, 212(1), 107597.
  12. Chen, H., Guo, S., Xia, Y., Yuan, L., Lu, M., Zhou, M., ... & Ma, J. (2018). The role of Rho-GEF Trio in regu-lating tooth root development through the p38 MAPK pathway. Experimental Cell Research, 372(2), 158-167.
  13. Chen, J., Lan, Y., Baek, J. A., Gao, Y., & Jiang, R. (2009). Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Developmental Biology, 334(1), 174-185.
  14. Ding, L., Han, S., Peng, X., Wang, K., Zheng, S., Li, H., ... & Zhang, L. (2020). Tuftelin-derived peptide facilitates remineralization of initial enamel caries in vitro. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108(8), 3261-3269.
  15. Fang, P. A., Conway, J. F., Margolis, H. C., Simmer, J. P., & Beniash, E. (2011). Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proceedings of the National Academy of Sciences, 108(34), 14097-14102.
  16. Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., ... & Somerman, M. J. (2015). Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone, 78, 150-164.
  17. Gao, Y., Jiang, X., Wei, Z., Long, H., & Lai, W. (2023). The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Frontiers in Genetics, 14, 557.
  18. Gil-Bona, A., & Bidlack, F. B. (2020). Tooth enamel and its dynamic protein matrix. International Journal of Molecular Sciences, 21(12), 4458.
  19. Gong, X., Zhang, H., Xu, X., Ding, Y., Yang, X., Cheng, Z., ... & Sun, Y. (2022). Tracing PRX1+ cells during molar formation and periodontal ligament reconstruction. International Journal of Oral Science, 14(1), 5.
  20. Habelitz, S., & Bai, Y. (2021). Mechanisms of enamel mineralization guided by amelogenin nanoribbons. Jour-nal of Dental Research, 100(13), 1434-1443. Habelitz, S., & Bai, Y. (2021). Mechanisms of enamel mineralization guided by amelogenin nanoribbons. Jour-nal of Dental Research, 100(13), 1434-1443.
  21. Hao, J., Yang, H., Cao, Y., Zhang, C., & Fan, Z. (2020). IGFBP5 enhances the dentinogenesis potential of dental pulp stem cells via JNK and ErK signalling pathways. Journal of Oral Rehabilitation, 47(12), 1557-1565.
  22. He, L., Hao, Y., Zhen, L., Liu, H., Shao, M., Xu, X., ... & van Loveren, C. (2019). Biomineralization of dentin. Journal of Structural Biology, 207(2), 115-122.
  23. Hosoya, A., Shalehin, N., Takebe, H., Shimo, T., & Irie, K. (2020). Sonic hedgehog signaling and tooth deve-lopment. International Journal of Molecular Sciences, 21(5), 1587.
  24. Ikeda, A., Shahid, S., Blumberg, B. R., Suzuki, M., & Bartlett, J. D. (2019). ADAM10 is expressed by ame-loblasts, cleaves the RELT TNF receptor extracellular domain and facilitates enamel development. Scientific Reports, 9(1), 14086.
  25. Iwasaki, K., Bajenova, E., Somogyi-Ganss, E., Miller, M., Nguyen, V., Nourkeyhani, H., ... & Ganss, B. (2005). Amelotin—a novel secreted, ameloblast-specific protein. Journal of Dental Research, 84(12), 1127-1132.
  26. Jia, S., Kwon, H. J. E., Lan, Y., Zhou, J., Liu, H., & Jiang, R. (2016). Bmp4-Msx1 signaling and Osr2 cont-rol tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Developmental biology, 420(1), 110-119.
  27. Lee, H. K., Park, J. T., Cho, Y. S., Bae, H. S., Cho, M. I., & Park, J. C. (2012). Odontogenic ameloblasts-asso-ciated protein (ODAM), via phosphorylation by bone morphogenetic protein receptor type IB (BMPR–IB), is implicated in ameloblast differentiation. Journal of Cellular Biochemistry, 113(5), 1754-1765.
  28. Li, H., Cui, D., Zheng, L., Zhou, Y., Gan, L., Liu, Y., ... & Wan, M. (2021). Bisphenol A exposure disrupts ena-mel formation via EZH2-mediated H3K27me3. Journal of Dental Research, 100(8), 847-857.
  29. Liang, Y., Shakya, A., & Liu, X. (2022). Biomimetic Tubular Matrix Induces Periodontal Ligament Principal Fiber Formation and Inhibits Osteogenic Differentiation of Periodontal Ligament Stem Cells. ACS Applied Materials & Interfaces, 14(32), 36451-36461.
  30. Liu, G., Sun, Q., Wu, X., Liu, Y., Chen, Y., Cao, Z., ... & Xia, H. (2023). Clock genes are expressed in cemen-tum and regulate the proliferation and mineralization of cementoblasts. In Vitro Cellular & Developmental Biology-Animal, 1-9.
  31. Liu, S., Zhou, Y., Chen, Y., Liu, Y., Peng, S., Cao, Z., & Xia, H. (2022). Bmal1 promotes cementoblast differen-tiation and cementum mineralization via Wnt/β-catenin signaling. Acta Histochemica, 124(3), 151868.
  32. Lynch, C. D., O’sullivan, V. R., Dockery, P., McGillycuddy, C. T., Rees, J. S., & Sloan, A. J. (2011). Hun-ter–Schreger Band patterns and their implications for clinical dentistry. Journal of Oral Rehabilitation, 38(5), 359-365.
  33. Masurier, N., Arama, D. P., El Amri, C., & Lisowski, V. (2018). Inhibitors of kallikrein-related peptidases: An overview. Medicinal Research Reviews, 38(2), 655-683.
  34. Müller, A. K., Meyer, M., & Werner, S. (2012, December). The roles of receptor tyrosine kinases and their ligands in the wound repair process. In Seminars in Cell & Developmental Biology. Academic Press.
  35. Nishio, C., Wazen, R., Kuroda, S., Moffatt, P., & Nanci, A. (2010). Disruption of periodontal integrity induces expression of apin by epithelial cell rests of Malassez. Journal of Periodontal Research, 45(6), 709-713.
  36. Nishio, C., Wazen, R., Moffatt, P., & Nanci, A. (2013). Expression of odontogenic ameloblast-associated and amelotin proteins in the junctional epithelium. Periodontology 2000, 63(1), 59-66.
  37. Niu, L. N., Jee, S. E., Jiao, K., Tonggu, L., Li, M., Wang, L., ... & Tay, F. R. (2017). Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nature Materials, 16(3), 370-378.
  38. Nurbaeva, M. K., Eckstein, M., Concepcion, A. R., Smith, C. E., Srikanth, S., Paine, M. L., ... & Lacruz, R. S. (2015). Dental enamel cells express functional SOCE channels. Scientific Reports, 5(1), 15803.
  39. Ogawa, T., Kapadia, H., Feng, J. Q., Raghow, R., Peters, H., & D’Souza, R. N. (2006). Functional consequences of interactions between Pax9 and Msx1 genes in normal and abnormal tooth development. Journal of Biological Chemistry, 281(27), 18363-18369.
  40. Oka, H., Ito, S., Kawakami, M., Sasaki, H., Abe, S., Matsunaga, S.,  Mizoguchi, T. (2023). Subset of the peri-odontal ligament expressed leptin receptor contributes to part of hard tissue-forming cells. Scientific Reports, 13(1), 3442.
  41. Oka, K. (2022). Fibrillin protein, a candidate for creating a suitable scaffold in PDL regeneration while avoiding ankylosis. Genesis, 60(8-9), 23486.
  42. Özel, Ş., & Yanık, D. (2021). Tooth coronal index and a new staging system for dental age estimation in sout-hern Turkish population. Australian Journal of Forensic Sciences, 1-15.
  43. Paine, M. L., Luo, W., Wang, H. J., Bringas, P., Ngan, A. Y., Miklus, V. G., ... Snead, M. L. (2005). Dentin sialoprotein and dentin phosphoprotein overexpression during amelogenesis. Journal of Biological Chemistry, 280(36), 31991-31998.
  44. Pandya, M., Lin, T., Li, L., Allen, M. J., Jin, T., Luan, X., & Diekwisch, T. G. (2017). Posttranslational ameloge-nin processing and changes in matrix assembly during enamel development. Frontiers in Physiology, 8, 790.
  45. Papagerakis, P., Lin, H. K., Lee, K. Y., Hu, Y., Simmer, J. P., Bartlett, J. D., & Hu, J. C. (2008). Premature stop codon in MMP20 causing amelogenesis imperfecta. Journal of Dental Research, 87(1), 56-59.
  46. Ravi, V., Murashima-Suginami, A., Kiso, H., Tokita, Y., Huang, C. L., Bessho, K., ... & Takahashi, K. (2023). Advances in tooth agenesis and tooth regeneration. Regenerative Therapy, 22, 160-168.
  47. Saito, M., Nishida, E., Sasaki, T., Yoneda, T., & Shimizu, N. (2009). The KK-Periome database for transcripts of periodontal ligament development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 312(5), 495-502.
  48. Sasaki, T., Ito, Y., Xu, X., Han, J., Bringas Jr, P., Maeda, T., ... & Chai, Y. (2005). LEF1 is a critical epithelial survival factor during tooth morphogenesis. Developmental Biology, 278(1), 130-143.
  49. Seang, S., Chenboonthai, N., Nisaeh, N., Teantongdee, A., Jamsai, S., Changgnam, C., ... & Limjeerajarus, C. N. (2022). The Prostacyclin Analog Iloprost Promotes Cementum Formation and Collagen Reattachment of Replanted Molars and Up-regulates Mineralization by Human Periodontal Ligament Cells. Journal of Endo-dontics, 48(8), 1046-1054.
  50. Sharir, A., Marangoni, P., Zilionis, R., Wan, M., Wald, T., Hu, J. K., ... & Klein, O. D. (2019). A large pool of actively cycling progenitors orchestrates self-renewal and injury repair of an ectodermal appendage. Nature Cell Biology, 21(9), 1102-1112.
  51. Shin, N. Y., Yamazaki, H., Beniash, E., Yang, X., Margolis, S. S., Pugach, M. K., ... & Margolis, H. C. (2020). Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. Journal of Biological Chemistry, 295(7), 1943-1959.
  52. Smith, C. E., Hu, Y., Hu, J. C. C., & Simmer, J. P. (2016). Ultrastructure of early amelogenesis in wild-type, Amelx-, and Enam mice: Enamel ribbon initiation on dentin mineral and ribbon orientation by ameloblasts. Molecular Genetics & Genomic Medicine, 4(6), 662-683.
  53. Smith, C. E., Murillo, G., Brookes, S. J., Poulter, J. A., Silva, S., Kirkham, J., ... & Mighell, A. J. (2016). De-letion of amelotin exons 3–6 is associated with amelogenesis imperfecta. Human Molecular Genetics, 25(16), 3578-3587.
  54. Stifler, C. A., Yamazaki, H., Gilbert, P. U., Margolis, H. C., & Beniash, E. (2022). Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice. Journal of Structural Biology, 214(2), 107844.
  55. Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C., & Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow–derived mesenchymal stem cells. Stem Cells, 24(3), 686-695.
  56. Tomokiyo, A., Wada, N., & Maeda, H. (2019). Periodontal ligament stem cells: regenerative potency in perio-dontium. Stem Cells and Development, 28(15), 974-985.
  57. Vaseenon, S., Chattipakorn, N., & Chattipakorn, S. C. (2020). The possible role of basic fibroblast growth factor in dental pulp. Archives of Oral Biology, 109, 104574.
  58. Veis A. (2011). Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth. Front Biosci (Landmark Ed). 16:2540–2560
  59. Wang, J., Feng, J. Q. (2017). Signaling pathways critical for tooth root formation. Journal of Dental Research, 96(11), 1221-1228.
  60. Wang, S., Choi, M., Richardson, A. S., Reid, B. M., Seymen, F., Yildirim, M., ... & Hu, J. C. (2014). STIM1 and SLC24A4 are critical for enamel maturation. Journal of Dental Research, 93, 94-100.
  61. Wang, Y., Li, L., Zheng, Y., Yuan, G., Yang, G., He, F., & Chen, Y. (2012). BMP activity is required for tooth development from the lamina to bud stage. Journal of Dental Research, 91(7), 690-695.
  62. Wilmers, J., Bargmann, S. (2020). Nature’s design solutions in dental enamel: Uniting high strength and extre-me damage resistance. Acta Biomaterialia, 107, 1-24.
  63. Wise, G. E., Frazier-Bowers, S., & D’souza, R. N. (2002). Cellular, molecular, and genetic determinants of tooth eruption. Critical Reviews in Oral Biology & Medicine, 13(4), 323-335.
  64. Yamaguchi, M., Takami, M., Azetsu, Y., Karakawa, A., Chatani, M., Funatsu, T., & Sakai, N. (2023). Effects of anti-RANKL antibodies administered to pregnant mice on bone and tooth development in neonates. Journal of Oral Biosciences, 65(2), 186-194.
  65. Yamazaki, H., Tran, B., Beniash, E., Kwak, S. Y., & Margolis, H. C. (2019). Proteolysis by MMP20 prevents aberrant mineralization in secretory enamel. Journal of Dental Research, 98(4), 468-475.
  66. Yang, G., Yuan, G., Ye, W., Cho, K. W., & Chen, Y. (2014). An atypical canonical bone morphogenetic protein (BMP) signaling pathway regulates Msh homeobox 1 (Msx1) expression during odontogenesis. Journal of Biological Chemistry, 289(45), 31492-31502.
  67. Yasuda, H. (2021). Discovery of the RANKL/RANK/OPG system. Journal of Bone and Mineral Metabolism, 39(1), 2-11.
  68. Yilmaz, E. D., Koldehoff, J., & Schneider, G. A. (2018). On the systematic documentation of the structural characteristics of bovine enamel: a critic to the protein sheath concept. Dental Materials, 34(10), 1518-1530.
  69. Yuan, G., Yang, G., Zheng, Y., Zhu, X., Chen, Z., Zhang, Z., & Chen, Y. (2015). The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development, 142(1), 128-139.
  70. Zhang, Y., Zheng, L., Le, M., Nakano, Y., Chan, B., Huang, Y., ... & Kohwi-Shigematsu, T. (2019). SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation. BMC Biology, 17(1), 1-16.
  71. Zhu W, Robey PG, Boskey AL (2007) The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Nelson D, Rosen CJ (eds) Osteoporosis, Third Edition, Elsevier, New York, 191-240.