Effects of Inflammation on Drug Metabolism and Pharmacogenetic Factors

İlter DEĞERa , Elif BABAOĞLUb , Melih Ö. BABAOĞLUa
aHacettepe University Faculty of Medicine, Department of Medical Pharmacology, Ankara, Türkiye
bHacettepe University Faculty of Medicine, Department of Chest Diseases, Ankara, Türkiye

Değer İ, Babaoğlu E, Babaoğlu MÖ. Effects of inflammation on drug metabolism and pharmacogenetic factors. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.80-8.

Article Language: EN

ABSTRACT
Variability in drug metabolism can alter drug response and toxicity in human. Cytochrome P450 (CYP) enzymes play the most prominent role in drug metabolism and their activities are regulated by various mechanisms. The activities of drug metabolizing enzymes can be altered by genetic or nongenetic factors. Inflammation and chronic inflammatory diseases have been identified as important nongenetic factors regulating drug-metabolizing enzymes. Such effects have been associated with inhibition of CYP activity and expression due to the systemic cytokines. Increase in inflammatory markers such as CRP, IL-6 and TNF-alpha in COVID-19 infection has also been associated with decrease in activities of some CYP enzymes. Both inflammation and genetic variability may interact to alter drug response and may cause a mismatch between the predicted drug response and the actual phenotype. The phenomenon is called phenoconversion.

Keywords: Cytochrome P-450 enzyme system; genetic polymorphism; inflammation; metabolism; pharmacogenetics

Referanslar

  1. Xie W. Overview of drug metabolism. Drug metabolism in diseases. 1st ed. California: Elsevier Academic Press; 2017. p.3.
  2. Zanger U, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics. 2013;138(1):103-41. [Crossref]  [PubMed]
  3. Gaedigk A, Ingelman-Sundberg M, Miller NA, Leeder JS, Whirl-Carrillo M, Klein TE, et al. The pharmacogene variation (pharmvar) consortium: Incorporation of the human cytochrome p450 (CYP) allele nomenclature database. Clinical Pharmacology & Therapeutics. 2018;103(3):399-401. [Crossref]  [PubMed]  [PMC]
  4. Correia, MA. Drug Biotransformation. In: Katzung BG, Vanderah TW, eds Basic & Clinical Pharmacology. 15th eds. McGraw Hill; 2021.
  5. Dunvald AD, Järvinen E, Mortensen C, Stage TB. Clinical and Molecular Perspectives on Inflammation-Mediated Regulation of Drug Metabolism and Transport. Clin Pharmacol Ther. 2022;112(2):277-90. [Crossref]  [PubMed]
  6. Parkinson A, Ogilvie B, Buckley D, Czerwinski, M, Parkinson O. Chapter 6: Biotransformation of xenobiotics. In: Klaassen C, ed. Casarett and Odoull's Toxicology: The Basic Science of Poisons. 9th ed. New York: McGraw-Hill Education; 2019. p.193-400.
  7. Volker M, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacology & Therapeutics. 2019;197:122-52. [Crossref]  [PubMed]  [PMC]
  8. Habano W, Kawamura K, Iizuka N, Terashima J, Tamotsu S, Ozawa S. Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clinical Epigenetics. 2015;105(7). [Crossref]  [PubMed]  [PMC]
  9. Reeh H, Rudolph N, Billing U, Christen H, Streif S, Bullinger E, et al. Response to IL-6 and IL-6 classic signalling is determined by the ratio of the IL-6 receptor to gp130 expression: Fusing experimental insights and dynamic modelling. Cell Commun Signal. 2019;17:46. [Crossref]  [PubMed]  [PMC]
  10. Zhou Z, Xu M, Gao B. Hepatocytes: A key cell type for innate immunity. Cell. Mol. Immunol. 2016. [Crossref]  [PubMed]  [PMC]
  11. Cahill CM, Rogers JT. Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem. 2008;283:25900-12. [Crossref]  [PubMed]  [PMC]
  12. Pascussi J, Gerbal-Chaloin S, Pichard-Garcia L, Daujat M, Fabre J, Maurel P, et al. Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem Biophys Res Commun. 2000;274:707-13. [Crossref]  [PubMed]
  13. Cheng P, Wang M, Morgan E. Rapid Transcriptional Suppression of Rat Cytochrome P450 Genes by Endotoxin Treatment and Its Inhibition by Curcumin. J Pharmacol Exp Ther 2003;307:1205-12. [Crossref]  [PubMed]
  14. Pitarque M, Rodríguez-Antona C, Oscarson M, Ingelman-Sundberg M. Transcriptional regulation of the human CYP2A6 gene. J Pharmacol Exp Ther. 2005;313:814-22. [Crossref]  [PubMed]
  15. Kugler N, Klein K, Zanger U. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochemical pharmacology. 2020;171:1-13. [Crossref]  [PubMed]
  16. Evers R, Dallas S, Dickmann LJ, Fahmi OA, Kenny J, Kraynov E, et al. Critical review of preclinical approaches to investigate cytochrome P450-mediated therapeutic protein drug-drug interactions and recommendations for best practices: A white paper. Drug metabolism and disposition. 2013;41:1598-609. [Crossref]  [PubMed]
  17. Richardson TA, Morgan ET. Hepatic cytochrome P450 gene regulation during endotoxin-induced inflammation in nuclear receptor knockout mice. The Journal of Pharmacology and Experimental Therapeutics. 2005;314(2):703-9. [Crossref]  [PubMed]
  18. Richardson TA, Sherman M, Antonovic L, Kardar SS, Strobel HW, Kalman D, et al. Hepatic and renal cytochrome p450 gene regulation during Citrobacter rodentium infection in wild-type and toll-like receptor 4 mutant mice. Drug Metabolism and Disposition. 2006;34(3):354-60. [Crossref]  [PubMed]  [PMC]
  19. Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacology & Therapeutics. 2020;215:1-21. [Crossref]  [PubMed]  [PMC]
  20. Elkahwaji J, Robin MA, Berson A, Tinel M, Lettéron P, Labbe G, et al. Decrease in hepatic cytochrome P450 after interleukin-2 immunotherapy. Biochemical pharmacology. 1999;57:951-4. [Crossref]  [PubMed]
  21. Göktaş MT et al. Lower CYP2C9 activity in Turkish patients with Behçet's disease compared to healthy subjects: a down-regulation due to inflammation? Eur J Clin Pharmacol. 2015;71:1223-8. [Crossref]  [PubMed]
  22. Göktaş MT et al. Decreased activity and genetic polymorphisms of CYP2C19 in Behçet's disease. Basic Clin Pharmacol Toxicol. 2017;121:266-71. [Crossref]  [PubMed]
  23. Moriyama B, Owusu Obeng A, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clinical pharmacology & therapeutics. 2017;102(1):45-51. [Crossref]  [PubMed]  [PMC]
  24. Ohnishi A, Murakami S, Akizuki S, Mochizuki J, Echizen H, Takagi I. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. J Clin Pharmacol. 2005;45:1221-9. [Crossref]  [PubMed]
  25. Shah RR, Smith RL. Addressing phenoconversion: the Achilles' heel of personalized medicine. British Journal of Clinical Pharmacology. 2014;79(2):222-40. [Crossref]  [PubMed]  [PMC]
  26. Preskorn SH, Kane CP, Lobello K, Nichols AI, Fayyad R, Buckley G, et al. Cytochrome P450 2D6 Phenoconversion Is Common in Patients Being Treated for Depression: Implications for Personalized Medicine. J Clin Psychiatry. 2013. [Crossref]  [PubMed]
  27. Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, et al. A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases - Wuhan, China 2019-2020. China CDC Wkly. 2020;2(4):61-2. [Crossref]  [PubMed]  [PMC]
  28. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782-93. [Crossref]  [PubMed]
  29. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. [Crossref]  [PubMed]  [PMC]
  30. Chouaki Benmansour N, Carvelli J, Vivier E. Complement cascade in severe forms of COVID-19: Recent advances in therapy. Eur J Immunol. 2021;51(7):1652-9. [Crossref]  [PubMed]  [PMC]
  31. Li C, He Q, Qian H, Liu J. Overview of the pathogenesis of COVID-19 (Review). Exp Ther Med. 2021;22(3):1011. [Crossref]  [PubMed]  [PMC]
  32. Wong RSY. Inflammation in COVID-19: from pathogenesis to treatment. Int J Clin Exp Pathol. 2021;14(7):831-44.
  33. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. [Crossref]  [PubMed]  [PMC]
  34. Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther. 2021;6(1):255. [Crossref]  [PubMed]  [PMC]
  35. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607-13. [Crossref]  [PubMed]  [PMC]
  36. Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol. 2021;191(1):4-17. [Crossref]  [PubMed]  [PMC]
  37. Sekhawat V, Green A, Mahadeva U. COVID-19 autopsies: conclusions from international studies. Diagn Histopathol (Oxf). 2021;27(3):103-7. [Crossref]  [PubMed]  [PMC]
  38. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. [Crossref]  [PubMed]
  39. Covid-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (Covid-19) Treatment Guidelines. National Institutes of Health. Available at Accessed [15.09.2022]. [Link]
  40. Lenoir C, Daali Y, Rollason V, Curtin F, Gloor Y, Bosilkovska M, et al. Impact of Acute Inflammation on Cytochromes P450 Activity Assessed by the Geneva Cocktail. Clinical Pharmacology & Therapeutics. 2020;109(6):1668-76. [Crossref]  [PubMed]  [PMC]