ELECTROENCEPHALOGRAPHY MONITORING IN CRITICALLY ILL CHILD

Ahmet Ziya Birbilen1 Burcu Akbaba2 Özlem Tekşam3

1Hacettepe University, Faculty of Medicine, Department of Pediatrics, Ankara, Türkiye
2Hacettepe University, Faculty of Medicine, Department of Pediatrics, Ankara, Türkiye
3Hacettepe University, Faculty of Medicine, Department of Pediatrics, Ankara, Türkiye

Birbilen AZ, Akbaba B, Tekşam Ö. Electroencephalography Monitoring in Critically Ill Child. In: Bal A, editor. Noninvasive Monitoring of Critically Ill Child. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.51-59.

ABSTRACT

Over the last decade, electroencephalography (EEG) has been used more and more as an important tool of neurological monitoring in pediatric emergencies. Seizures, ischemia, cerebral edema, and high IC pressure are the etiological diagnoses often presented as critical illnesses in children. These diseases demand instantaneous recognition and intermediate steps. Given the limitations imposed by clinical conditions such as sedation and neuromuscular blockade, conventional neurological examinations may be inadequate. Therefore, EEG is emerging as a vital, noninvasive method that allows detailed assess- ment of cerebral activity under challenging conditions.

In this article, we discuss the technical and clinical aspects of EEG in pediatric emergencies. In routine EEG, scalp electrodes (usually 19 in a standard array) are placed to record electrical discharges created by neuronal firing. The signal recorded reflects the total postsynaptic potentials (excitators-inhibitors) of brain activity. These data are then handled by methods such as differential conversion, which splits it into different forms like delta, theta, alpha, beta, and gamma. In the end, standard EEG is still the gold standard. However, rapid alternatives in emergent situations have been introduced as a few mon- tage EEGs. Clinically acceptable diagnostic sensitivity and specificity It, therefore, aids in the rapid decision-making of clinicians.

Moreover, related EEG modalities in the acute care setting (continuous EEG cEEG, quantitative EEG qEEG/amplitude-integrated qEEG (aEEG)) will also be encountered in emergencies. Every EEEG helps make rapid identification of both convulsive and nonconvulsive seizures. They influence treat- ment and predict outcomes. It has been demonstrated to reduce needless patient transfers for EEG at reference hospitals, decrease length of stay, and reduce total cost savings.

Among these tools, the incorporation of machine learning and artificial intelligence can offer instanta- neous analysis/predictive capabilities. Hence, it helps with reading the EEG. These breakthroughs open pathways for future closed-loop systems to substantially enhance patient management. To summarize, progress in traditional and more advanced EEG paradigms is a significant step towards implementing pediatric neuros critical care. New diagnostic and therapeutic trial protocols are needed for clinical improvement. EEG reading education may be required for emergency staff in the near future.

Keywords: Electroencephalography; Pediatric emergency medicine; Status epilepticus; Critical care;

Artificial intelligence

Referanslar

  1. Simma L, Romano F, Schmidt S, Ramantani G, Bölsterli BK. Integrating Neuromonitoring in Pediatric Emergency Medicine: Exploring Two Options for Point-of-Care Electroencephalogram (pocEEG) via Patient Monitors-A Technical Note. J Pers Med. 2023;13(9):1411. Published 2023 Sep 20. [Crossref]  [PubMed]  [PMC]
  2. Davey Z, Gupta PB, Li DR, Nayak RU, Govindarajan P. Rapid Response EEG: Current State and Future Directions. Current Neurology and Neuroscience Reports. 2022/12/01 2022;22(12):839-846. [Crossref]  [PubMed]  [PMC]
  3. Parvizi J, Gururangan K. Reduced montage electroencephalography: A choice between pragmatism and conventionalism. Neurophysiologie Clinique. 2025;55(2):103063. [Crossref]  [PubMed]
  4. Suen CG, Wood AJ, Burke JF, Betjemann JP, Guterman EL. Hospital EEG Capability and Associations With Interhospital Transfer in Status Epilepticus. Neurol Clin Pract. Apr 2023;13(2):e200143. [Crossref]  [PubMed]  [PMC]
  5. Zehtabchi S, Abdel Baki SG, Grant AC. Electroencephalographic findings in consecutive emergency department patients with altered mental status: a preliminary report. Eur J Emerg Med. Apr 2013;20(2):126-9. [Crossref]  [PubMed]  [PMC]
  6. Balcı Ö, Simsek E, Yazıcı Özkaya P, et al. Continuous EEG Monitoring in Critically Ill Children and Prognostic Factors for Short-term Outcome: An Observational Study. The Journal of Pediatric Research. 09/01 2022;9:228-235. [Crossref]
  7. Herman ST, Abend NS, Bleck TP, et al. Consensus Statement on Continuous EEG in Critically Ill Adults and Children, Part I: Indications. Journal of Clinical Neurophysiology. 2015;32(2). [Crossref]  [PubMed]  [PMC]
  8. Tao JX, Ray A, Hawes-Ebersole S, Ebersole JS. Intracranial EEG substrates of scalp EEG interictal spikes. Epilepsia. May 2005;46(5):669-76. [Crossref]  [PubMed]
  9. Maher C, Yang Y, Truong ND, Wang C, Nikpour A, Kavehei O. Seizure detection with reduced electroencephalogram channels: research trends and outlook. R Soc Open Sci. May 2023;10(5):230022. [Crossref]  [PubMed]  [PMC]
  10. Raucci U, Pro S, Di Capua M, et al. A reappraisal of the value of video-EEG recording in the emergency department. Expert Review of Neurotherapeutics. 2020/05/03 2020;20(5):459-475. [Crossref]  [PubMed]
  11. Sánchez Fernández I, Sansevere AJ, Guerriero RM, et al. Time to electroencephalography is independently associated with outcome in critically ill neonates and children. Epilepsia. 2017;58(3):420-428. [Crossref]  [PubMed]  [PMC]
  12. Nozawa M, Terashima H, Tsuji S, Kubota M. A Simplified Electroencephalogram Monitoring System in the Emergency Room. Pediatric Emergency Care. 2019;35(7). [Crossref]  [PubMed]
  13. Takase R, Sasaki R, Tsuji S, Uematsu S, Kubota M, Kobayashi T. Benzodiazepine Use for Pediatric Patients With Suspected Nonconvulsive Status Epilepticus With or Without Simplified Electroencephalogram: A Retrospective Cohort Study. Pediatric Emergency Care. 2022;38(9). [Crossref]  [PubMed]
  14. Simma L, Bauder F, Schmitt-Mechelke T. Feasibility and usefulness of rapid 2-channel-EEG-monitoring (pointof-care EEG) for acute CNS disorders in the paediatric emergency department: an observational study. Emergency Medicine Journal. 2021;38(12):919-922. [Crossref]  [PubMed]
  15. Benedetti GM, Guerriero RM, Press CA. Review of Noninvasive Neuromonitoring Modalities in Children II: EEG, qEEG. Neurocrit Care. Dec 2023;39(3):618-638. [Crossref]  [PubMed]  [PMC]
  16. Nuwer MR, Coutin-Churchman P. Brain Mapping and Quantitative Electroencephalogram. In: Aminoff MJ, Daroff RB, eds. Encyclopedia of the Neurological Sciences (Second Edition). Academic Press; 2014:499-504. [Crossref]
  17. Galiana-Simal A, Vecina-Navarro P, Sánchez-Ruiz P, Vela-Romero M. Quantitative electroencephalography as a tool for the diagnosis and follow-up of patients with attention-deficit/hyperactivity disorder. Article. Revista de Neurologia. 2020;70(6):197-205. [Crossref]  [PubMed]
  18. Bruns N, Sanchez-Albisua I, Weiß C, et al. Amplitude-Integrated EEG for Neurological Assessment and Seizure Detection in a German Pediatric Intensive Care Unit. Front Pediatr. 2019;7:358. [Crossref]  [PubMed]  [PMC]
  19. Schultz B, Schultz M, Boehne M, Dennhardt N. EEG monitoring during anesthesia in children aged 0 to 18months: amplitude-integrated EEG and age effects. BMC Pediatr. Mar 26 2022;22(1):156. [Crossref]  [PubMed]  [PMC]
  20. Parvizi J, Gururangan K. Reduced montage electroencephalography: A choice between pragmatism and conventionalism. Neurophysiol Clin. Apr 2025;55(2):103063. [Crossref]  [PubMed]
  21. Stephens CM, Mathieson SR, McNamara B, et al. Electroencephalography Quality and Application Times in a Pediatric Emergency Department Setting: A Feasibility Study. Article. Pediatric Neurology. 2023;148:82-85. [Crossref]  [PubMed]
  22. Lin Y-C, Lin H-A, Chang M-L, Lin S-F. Diagnostic accuracy of reduced electroencephalography montages for seizure detection: A frequentist and Bayesian meta-analysis. Neurophysiologie Clinique. 2025/04/01/ 2025;55(2):103044. [Crossref]  [PubMed]
  23. Green A, Wegman ME, Ney JP. Economic review of pointof-care EEG. Review. Journal of Medical Economics. 2023;27(1):51-61. [Crossref]  [PubMed]
  24. Simma L, Kammerl A, Ramantani G. Point-of-care EEG in the pediatric emergency department: a systematic review. European Journal of Pediatrics. 2025/03/07 2025;184(3):231. [Crossref]  [PubMed]  [PMC]
  25. Kozak R, Gururangan K, Dorriz PJ, Kaplan M. Point-ofcare electroencephalography enables rapid evaluation and management of non-convulsive seizures and status epilepticus in the emergency department. J Am Coll Emerg Physicians Open. Aug 2023;4(4):e13004. [Crossref]  [PubMed]  [PMC]
  26. Bellini A, Curti DG, Cursi M, et al. Predictors of seizure detection and EEG clinical impact in an italian tertiary emergency department. J Neurol. Aug 2024;271(8):5137-5145. [Crossref]  [PubMed]
  27. Wright NMK, Madill ES, Isenberg D, et al. Evaluating the utility of Rapid Response EEG in emergency care. Emerg Med J. Dec 2021;38(12):923-926. [Crossref]  [PubMed]
  28. Chen J, Xie L, Hu Y, Lan X, Jiang L. Nonconvulsive status epilepticus after cessation of convulsive status epilepticus in pediatric intensive care unit patients. Epilepsy & Behavior. 2018/05/01/ 2018;82:68-73. [Crossref]  [PubMed]
  29. Taran S, Ahmed W, Pinto R, et al. Educational initiatives for electroencephalography in the critical care setting: a systematic review and meta-analysis. Can J Anaesth. Aug 2021;68(8):1214-1230. Programmes éducatifs d'enseignement de l'électroencéphalographie en milieu de soins intensifs : revue systématique et méta-analyse. [Crossref]  [PubMed]  [PMC]
  30. Chari G, Yadav K, Nishijima D, Omurtag A, Zehtabchi S. Improving the ability of ED physicians to identify subclinical/electrographic seizures on EEG after a brief training module. International Journal of Emergency Medicine. 2019/03/27 2019;12(1):11. [Crossref]  [PubMed]  [PMC]
  31. Ulate-Campos A, Coughlin F, Gaínza-Lein M, Fernández IS, Pearl PL, Loddenkemper T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure - European Journal of Epilepsy. 2016;40:88-101. [Crossref]  [PubMed]
  32. Siddiqui MK, Morales-Menendez R, Huang X, Hussain N.A review of epileptic seizure detection using machine learning classifiers. Brain Informatics. 2020/05/25 2020;7(1):5. [Crossref]  [PubMed]  [PMC]
  33. Bhattacharyya A, Pachori RB. A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Trans Biomed Eng. Sep 2017;64(9):2003-2015. [Crossref]  [PubMed]
  34. Mourid MR, Irfan H, Oduoye MO. Artificial Intelligence in Pediatric Epilepsy Detection: Balancing Effectiveness With Ethical Considerations for Welfare. Review. Health Science Reports. 2025;8(1)e70372. [Crossref]  [PubMed]  [PMC]
  35. Gomez-Quintana S, O'Shea A, Factor A, Popovici E, Temko A. A method for AI assisted human interpretation of neonatal EEG. Article. Scientific Reports. 2022;12(1)10932. [Crossref]  [PubMed]  [PMC]
  36. Di Sarno L, Caroselli A, Tonin G, et al. Artificial Intelligence in Pediatric Emergency Medicine: Applications, Challenges, and Future Perspectives. Review. Biomedicines. 2024;12(6)1220. [Crossref]  [PubMed]  [PMC]
  37. Frankel MA, Lehmkuhle MJ, Spitz MC, Newman BJ, Richards SV, Arain AM. Wearable Reduced-Channel EEG System for Remote Seizure Monitoring. Front Neurol. 2021;12:728484. [Crossref]  [PubMed]  [PMC]
  38. 38. Truong ND, Yang Y, Maher C, et al. Seizure Susceptibility Prediction in Uncontrolled Epilepsy. Front Neurol. 2021;12:721491. [Crossref]  [PubMed]  [PMC]
  39. Ding TY, Gagliano L, Jahani A, Toffa DH, Nguyen DK, Bou Assi E. Epileptic seizure forecasting with wearable-based nocturnal sleep features. Epilepsia Open. Oct 2024;9(5):1793-1805. [Crossref]  [PubMed]  [PMC]