Endogen Enzymes: Amylase

Veysel DOĞANa

aKastamonu University Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Kastamonu, Türkiye

ABSTRACT
The remarkable acceleration of pancreatic amylase production in young poultry has garnered significant attention in the field of poultry nutrition. This phenomenon has raised intriguing questions and spurred speculation about the potential benefits of supplementing the diets of young poultry with exogenous microbial amylases. Amylase, an enzyme responsible for the digestion of starch, plays a pivotal role in unlocking the energy stored in complex carbohydrates, making it a critical component of poultry nutrition. The hypothesis that young poultry may exhibit heightened responsiveness to exogenous amylase supplementation stems from recognition that their endogenous amylase systems are rapidly evolving during this crucial developmental phase. As young poultry transition from the dependency on yolk-based nutrition to external feeding, their digestive systems undergo significant maturation. Notably, the pancreas responds by enhancing the production of amylase, which is vital for efficient starch digestion. This surge in pancreatic amylase production has led researchers to explore the supplemental microbial amylases. This investigation is particularly relevant in optimizing the growth and overall performance of poultry during this critical phase. In this article, we delve into the intriguing dynamics of amylase supplementation in young poultry diets. We examine the factors that drive the surge in pancreatic amylase production in this demographic and evaluate the implications of exogenous amylase supplementation for their growth and nutritional efficiency. By shedding light on the responsiveness of young poultry to amylase supplementation, we aim to provide valuable insights for enhancing their dietary formulation and promoting healthier and more productive flocks.
Keywords: Alpha-amylases; broilers; poultry

Referanslar

  1. Slominski BA, Meng X, Jia W, Guenter W, Jones O. The effect of lipase, amylase and protease addition on growth performance and nutrient digestion in young broiler chickens. In: 12th European Poultry Conference; Verona, Italy, 2006; p. 10-4.
  2. Jin SH, Corless A, Sell JL. Digestive system development in post-hatch poultry. Wolrds Poult Sci J. 1998;54:335-45. [Crossref]
  3. Maiorka A, Dahlke F, Azevedo MS. Broiler adaptation to post-hatching period. Cienc Rural. 2006;36(2):701-8. [Crossref]
  4. Uni Z, Noy Y, Sklan D. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult Sci. 1995;74:1622-9. [Crossref]  [PubMed]
  5. Svihus B. Starch digestion capacity of poultry. Poult Sci. 2014;93:2394-9. [Crossref]  [PubMed]
  6. Weurding RE, Veldman A, Veen WAG, van der Aar PJ, Verstegen MWA. Starch digestion rate in the small intestine of broiler chickens differs among feedstuffs. J Nutr. 2001;131:2329-35. [Crossref]  [PubMed]
  7. Pirgozliev VR, Rose SP, Bedford MR. The effect of amylose:amylopectin ratio in dietary starch on growth performance and gut morphology in broiler chickens. Arch Geflügk. 2010;74(1):21-9.
  8. Cowieson AJ, Vieira SL, Stefanello C. Exogenous microbial amylase in the diets of poultry: What do we know? J Appl Poult Res. 2019;28:556-65. [Crossref]
  9. Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer - Structure, metabolism and in planta modifications. J Plant Sci. 2022; 2022:111223. [Crossref]  [PubMed]
  10. Bogracheva TY, Wang YL, Hedley CL. The effect of water content on the ordered/disordered structures in starches. Biopolymers. 2001;58(3):247-59. [Crossref]  [PubMed]
  11. Imberty A, Buléon A, Tran V, Péerez S. Recent advances in knowledge of starch structure. Starch‐Stärke. 1991;43(10):375-84. [Crossref]
  12. Li J, Kong X, Ai Y. Modification of granular waxy, normal, and high-amylose maize starches by maltogenic α-amylase to improve functionality. Carbohdyrate Polymers. 2022;290:119503. [Crossref]  [PubMed]
  13. Ai Y, Jane JI. Gelatinization and rheological properties of starch. Starch‐Stärke. 2015;67(3-4):213-24. [Crossref]
  14. El Seoud OA, Nawaz H, Areas EPG. Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: An overview. Molecules. 2013;18:1270-313. [Crossref]  [PubMed]  [PMC]
  15. Zkaria NH, Muhammad N, Al Bakri Abdullar MM. Potential of starch nanocomposites for biomedical applications. IOP Conf Ser: Mater Sci Eng. 2017; 209:012087. [Crossref]
  16. Dostálová R, Horáček J, Hasalová I, Trojan R. Study of resistant starch (RS) content in peas during maturation. Czech J Food Sci. 2009; 27:120-24. [Crossref]
  17. Sakač N, Karnaš M, Dobša J, Jozanović M, Gvozdić V, Kovač-Andrić E, et al. Application of spectrophotometric fingerprint in cluster analysis for starch origin determination. Food Technology and Biotechnology. 2020;58(1):5. [Crossref]  [PubMed]  [PMC]
  18. Lehman U, Robin F. Slowly digestible starch- its structure and health implications: a review. Tre Food Sci Technol. 2007;18:346-55. [Crossref]
  19. Moran ET. Starch digestion in fowl. Poult Sci. 1982;61:1257-67. [Crossref]  [PubMed]
  20. Gray GM. Starch digestion and absorption in nonruminant. J Nutr. 1992; 122;172-7. [Crossref]  [PubMed]
  21. Zafarian F, Abdollahi MR, Ravindran V. Starch digestion in broiler fed cereal diets. Anim Feed Sci Technol. 2015;209:1629 [Crossref]
  22. Svihus B. Function of the digestive system. J Appl Poult Res. 2014;23(2):306-14. [Crossref]
  23. Svihus B, Uhlen AK, Harstad OM. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim Feed Sci Tehnol. 2005;122:303-20. [Crossref]
  24. Carré B, Mignon-Grasteau S, Péron A, Juin H, Bastianelli D. Wheat value: improvements by feed technology, plant breeding and animal genetics. World Poult Sci Ass. 2007;63:585-96. [Crossref]
  25. Bassi LS, Hejdysz M, Pruszynska-Oszmalek E, Wolc A, Cowieson AJ, Sorbara JOB, et al. The effect of amylase supplementation on individual variation, growth performance, and starch digestibility in broiler chickens. Poult Sci. 2023;102:102563. [Crossref]  [PubMed]  [PMC]
  26. Kaczmarek SA, Rogiewicz A, Mogielnicka M, Rutkowski A, Jones RO, Slominski BA. The effect of protease, amylase, and nonstarch polysaccharide-degrading enzyme supplementation on nutrient utilization and growth performance of broiler chickens fed corn-soybean meal-based diets. Poult Sci. 2014;93:1745-53. [Crossref]  [PubMed]
  27. Uni Z, Geyra A, Ben-Hur H, Sklan D. Small intestinal development in the young chick: Crypt formation and enterocyte proliferation and migration. Br Poult Sci. 2000;41:544-51. [Crossref]  [PubMed]
  28. Dibner JJ, Kitchell ML, Atwell CA, Ivey FJ. The effect of dietary ingredients and age on the microscopic structure of the gastrointestinal tract in poultry. J Appl Poult Res. 1996;5:70-7. [Crossref]
  29. Gehart H, Clevers H. Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol. 2019;16:19-34. [Crossref]  [PubMed]
  30. Gilbert ER, Li, Emmerson DA, Webb KE Jr, Wong EA. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult Sci. 2007;86:1739-53. [Crossref]  [PubMed]
  31. Nitsan Z, Dunnington EA, Siegel PB. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poult Sci. 1991;70:2040-8. [Crossref]  [PubMed]
  32. Osman AM. Amylase in chicken intestine and pancreas. Comp Biochem Physiol. 1982;73(3):571-4. [Crossref]  [PubMed]
  33. Sklan D, Noy Y. Hydrolysis and absorption in the small intestine of posthatch chicks. Poult Sci. 2000;79:1306-10. [Crossref]  [PubMed]
  34. O'Sullivan NP, Dunnington EA, Larsen AS, Siegel PB. Correlated responses in lines of chickens divergently selected for fifty-six-day body weight. 3 Digestive Enzymes. Poult Sci. 1992;71:610-7. [Crossref]  [PubMed]
  35. Gapusan RA, Yardley DG, Hughes BL. The amylase gene-enzyme system of chickens. II. Biochemical characterization of allozymes. Biochem Gen. 1990; 28:553-60. [Crossref]  [PubMed]
  36. Yardley DG, Gapusan RA, Jones JE, Hughes BL. The amylase gene-enzyme system of chickens. I. Allozymic and activity variation. Biochem Gen. 1988; 26:747-55. [Crossref]  [PubMed]
  37. Ravidran V, Abdollahi MR. Nutrient and digestive physiology of the broiler chick: State of the art of outlook. Animals. 2021;11:2795. [Crossref]  [PubMed]  [PMC]
  38. Katanbaf MN, Dunnington EA, Siegel PB. Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens selected 27 generations for high or low body weight. Growth Dev Ageing. 1988;52:11-21.
  39. Uni Z, Ganot S, Sklan D. Posthatch development of mucosal function in the broiler small intestine. Poult Sci. 1998;77:75-82. [Crossref]  [PubMed]
  40. Nir I, Nitsan Z, Mahagna M. Comperative growth and development of the digestive organs and of some enzymes in broiler and egg type chicks after hatching. Poult Sci. 1993;34(3):523-32. [Crossref]  [PubMed]
  41. Noy Y, Sklan D. Metabolic responses to early nutrition. J Appl Poult Sci. 1998; 7:437-51. [Crossref]
  42. Maiorka A, Santin E, Fischer da Silva AV, Bruno LDG, Boleli IC, Macari M. Influence of Broiler breeders age (30 and 60 Weeks) on embryonic gastrointestinal development. Braz J Poult Sci. 2000;2(2):141-8. [Crossref]
  43. Uni Z, Noy Y, Sklan D. Posthatch development of small intestinal function in the poult. Poult Sci. 1999;78:215-22. [Crossref]  [PubMed]
  44. Babkin BP. Secretory mechanism of the digestive glands. JAMA. 1944;126 (4):266. [Crossref]
  45. Kim SK, Hebrok M, Melton DA. Pancreas development in the chick embryo. Cold Spring Harb Symp Quant Biol. 1997;62:377-83. [Crossref]  [PubMed]
  46. Marchaim U, Kulka RG. The non-parallel increase of amylase, chymotrypsinogen and procarboxypeptidase in the developing chick pancreas. Biochem Biophy Acta. 1967;146:553-9. [Crossref]  [PubMed]
  47. Murakami H, Akiba Y, Horiguchi M. Growth and utilization of nutrients in newly-hatched chick with or without removal of residual yolk. Growth Develop Aging. 1992;56:75-84.
  48. Buonocore V, Giardina P, Parlamenti R, Poerio E, Silano V. Characterization of chicken pancreas α-amylase isozymes and interaction with protein inhibitors from wheat kernel. J Sci Food Agric. 1984;35:225-32. [Crossref]  [PubMed]
  49. Proszkowiec-Weglarz M. Gastrointestinal Anatomy and Physiology. In: Scanse SG, Dridi S, eds. Struki's Avian Physiology. London, UK; San Diego USA; Cambridge USA; Kidlington UK: Elsevier Inc. 2022. p.485-527. [Crossref]
  50. Vertiprakhov VG, Grozina AA, Fisinin VI, Surai PF. Adaptation of chicken pancreatic secretory function to feed composition. World Poult Sci J. 2023;79:27-41. [Crossref]
  51. Murai A, Satoh S, Okumura JI, Furuse M. Factors regulating amylase secretion from chicken pancreatic acini in vitro. Life Sci. 2000;66(7):585-91. [Crossref]  [PubMed]
  52. Grozina A, Veriprakhov V, Fisinin V. The postprandial activity of digestive enzymes in pancreatic juice and blood serum in chicken. The XVth European Poultry Conference Information and Proceedings, Dobrovnik, Crotia, World's Poultry Science Association, Crotian Branch. 2018. p.264.
  53. Santos RR, Awati A, Roubos-van den Hil PJ, Tersteeg-Zijderveld MHG, Koolmees PA, Fink-Gremmels J. Quantitative histo-morphometric analysis of heat-stress-related damage in the small intestines of broiler chickens. Avain Pathol. 2015;44:19-22. [Crossref]  [PubMed]
  54. Osman AM, Tanios NI. The effect of heat on the intestinal and pancreatic levels of amylase and maltase of laying hens and broilers. Comp Biochem Physiol A Comp Physiol. 1983;75(4):563-7. [Crossref]  [PubMed]
  55. Elnesr SS, Abdel-Azim AM. The impact of heat stress on the gastrointestinal tract integrity of poultry. Labyrinth: Fayoum Journal of Science and Interdisciplinary Studies 1. 2023;2:82-90.
  56. Slominski BA. Recent advanteges in research on enzymes for poultry diets. Poult Sci. 2011;90:2013-23. [Crossref]  [PubMed]
  57. De Souza PM, Magalhaes PO. Application of microbial α-amylase in industry- A review. Braz J Microbiol. 2010;41(4):850-61. [Crossref]  [PubMed]  [PMC]
  58. Uguru GC, Akinyauju JA, Sani A. The use of yam peel for growth of locally isolated Aspergillus niger and amylase production. Enzyme Microb Technol. 1997;21:46-51. [Crossref]
  59. Jin B, van Leeuwen HJ, Patel B, Yu Q. Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresour Technol. 1998;66:201-6. [Crossref]
  60. Goto CE, Barbosa EP, Kistner LC, Moreira FG, Lenartovicz V, Peralta RM. Production of amylase by Aspergillus fumigatus utilizing alpha-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiol Lett. 1998;167:139-43. [Crossref]  [PubMed]
  61. Moller K, Sharif MZ, Olsson L. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J Biotechnol. 2004;111: 311-8. [Crossref]  [PubMed]
  62. Cripwell RA, Rose SH, Viljoen-Bloom M, van Zyl WH. Improved raw starch amylase production by Saccharomyces cerevisiae using codon optimization strategies. FEMS Yeast Research. 2019;19(2):127. [Crossref]  [PubMed]
  63. Fincan SA, Enez B. Production of α-amylase from Bacillus megaterium MD-1. Turkish J Nat Sci. 2022;11(4):36-41. [Crossref]
  64. Baysal Z, Uyar F, Aytekin C. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 2003;38:1665-8. [Crossref]
  65. Asgher M, Asad MJ, Rahman SU, Legge RL. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Process Eng. 2007;79:950-5. [Crossref]
  66. Bedford MR, Autio K. Microscopic examination of feed and digesta from wheat-fed broiler chickens and its relation to bird performance. Poult Sci. 1996;75:1-4.
  67. Mahagna M, Nir I, Larbier M, Nitsan Z. Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reprod Nutr Dev. 1995;35:201-12. [Crossref]  [PubMed]
  68. Ritz CW, Hulet RM, Self BB, Denbow DM. Endogenous amylase levels and response to supplemental feed enzymes in male turkeys from hatch to eight weeks of age. Poult Sci. 1995;74:1317-22. [Crossref]  [PubMed]
  69. Shapiro F, Nir I. Stunting syndrome in broilers: Effect of age and exogenous amylase and protease on performance, development of the digestive tract, digestive enzyme activity, and apparent digestibility. Poult Sci. 1995;74:2019-28. [Crossref]  [PubMed]
  70. Svihus B, Hetland H. Ileal starch digestibility in growing broiler chickens fed on a wheat-based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. Br Poult Sci. 2001;42:633-7. [Crossref]  [PubMed]
  71. Bertoft E. Understanding starch structure: Recent progress. Agronomy. 2017; 7(3):56. [Crossref]
  72. Yuan J, Wang X, Yin D, Wang M, Yin X, Lei Z, et al. Effect of different amylases on the utilization of cornstarch in broiler chickens. Poult Sci. 2017; 96:1139-48. [Crossref]  [PubMed]
  73. Javed K, Salman M, Sharif M, Muneer H, Najam T, Iqbal U. Effect of enzymes by substitution of corn with wheat on growth performance and digestibility of broilers. Braz J Sci. 2022;1(5):76-86. [Crossref]
  74. Perz K, Kaczmarek SA, Nowaczewski S, Cowieson AJ, Jarosz L, Ciszewski A, et al. The effect of reduction of resistant starch content of faba bean and pea by amylase supplementation on performance, nutrient digestibility, and sialic acid excretion of broiler chickens. Anim Feed Sci Technol. 2023; 298:115621. [Crossref]
  75. Schramm VG, Massuquetto A, Bassi LS, Zavelinski VAB, Sorbara JOB, Cowieson AJ, et al. Exogenous α-amylase improves the digestibility of corn and corn-soybean meal diets for broilers. Poult Sci. 2021;100:101019. [Crossref]  [PubMed]  [PMC]
  76. Jiang Z, Zhou Y, Lu F, Han Z, Wang T. Effect of different levels of supplementary alpha-amylase on digestive enzyme activities and pancreatic amylase mRNA expression of young broilers. Asian-Aust J Anim Sci. 2008;21(1): 97-102. [Crossref]
  77. Stefanello C, Rios HV, Vieira SL, Soster P, Simoes CT, Sorbara JOB. Corn varieties as well as carbohydrases supplementation affects digestibility for broilers. Poult Sci. 2017;96:290-1.
  78. Møller MS, Svensson B. Structure, function and protein engineering of cereal-type inhibitors acting on amylolytic enzymes. Front Mol Biosci. 2022; 9:868568. [Crossref]  [PubMed]  [PMC]
  79. Gracia MI, Aranibar MJ, Lazaro R, Medel P, Mateos GG. α-Amylase supplementation of broiler chickens based on corn. Poult Sci. 2003;82:436-42. [Crossref]  [PubMed]
  80. Zhou H, Wu Y, Sun X, Yin D, Wang Y, Mahmood T, et al. Effect of exogenous α-(1,4)-amylase on the utilization of corn starch and glucose metabolism in broiler chickens. Animal. 2021;15(11)100396. [Crossref]  [PubMed]
  81. Cordova-Noboa HA, Oviedo-Rondon EO, Matta Y, Ortiz A, Buitrago GD, Martinez JD, et al. Corn kernel hardness, drying temperature and amylase supplementation affect live performance and nutrient utilization of broilers. Poult Sci. 2021;100:101395. [Crossref]  [PubMed]  [PMC]
  82. Aderibigbe A, Cowieson A, Sorbara JOB, Adeola O. Intestinal starch and energy digestibility in broiler chickens fed diets supplemented with α-amylase. Poult Sci. 2020;99:5907-14. [Crossref]  [PubMed]  [PMC]
  83. Naik RP, Reddy AR, Reddy KK, Jyothi J. Effect of encapsulated amylase enzyme on the performance and digestibility of energy in broilers. In Curr Microbiol App Sci. 2017;6(3):2098-14. [Crossref]