Endogen Enzymes: Lipase

hayvan-besleme-10-1-kapak-wos-etiketsiz

Cemal Georg ORHANa , Emre ŞAHİNb , Kazım ŞAHİNa

aFırat University Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Elazığ, Türkiye
bBingöl University Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Bingöl, Türkiye

ABSTRACT
Exogenous enzymes such as phytases, carbohydrases, proteases, and lipases, when added to the diet either individually or in combination, improve the digestibility of crude nutrients by breaking down starch, protein, and lipids. Although lipids are an essential source of energy for poultry, due to low lipase activity, lipid digestion may be inadequate in young animals. Therefore, lipase supplements are important to improve lipid digestibility in animals that reach slaughter weight at an early age, such as broilers. The results of current studies are inconsistent depending on factors such as the lipase source (animal or microbial), dose, and diet content. Lipases produced from microbial sources may be superior to animal lipases in terms of cost and efficacy. Furthermore, studies using different lipase sources in combination with emulsifiers that facilitate the emulsification of fats have shown that lipid digestion and fattening performance can be improved more effectively than when lipases are used alone. In conclusion, due to inconsistencies between studies, research on the use of lipases in poultry should be continued, and optimum dosage and administration methods should be determined.
Keywords: Poultry; enzyme; lipase; digestibility; emulsifiers

Referanslar

  1. Castro FLS, Kim WK. Applied research note: Exogenous lipase supplementation to low-energy, low-protein, and low-amino acid diets for broiler chickens from one to 42 d. J Appl Poult Res. 2021;30(1):100117. [Crossref]
  2. Alagawany M, Elnesr SS, Farag MR. The role of exogenous enzymes in promoting growth and improving nutrient digestibility in poultry. Iran J Vet Res. 2018;19(3):157-64.
  3. Musigwa S, Morgan N, Swick R, Cozannet P, Wu S-B. Optimisation of dietary energy utilisation for poultry-a literature review. Worlds Poult Sci J. 2021;77(1):5-27. [Crossref]
  4. Data Bridge Market Research. Global lipase in animal feed market-industry trends and forecast to 2029 [Date accessed: 28.07.2023]. Accsess link: [Link]
  5. Yildiz D. Global feed enzymes market [Date accessed:28.07.2023]. Accsess link: [Link]
  6. Ahmad A, Mughal GA, Abro R, Bughio S, Rizwana H, Leghari IH, et al. Effect of lipase and lysolecithin supplementation with low energy diet on growth performance, biochemical attributes and fatty acid profile of breast muscle of broiler chickens. Animals. 2023;13(4):737. [Crossref]  [PubMed]  [PMC]
  7. Maiorka A, da Silva AF, Santin E, Pizauro Jr JM, Macari M. Broiler breeder age and dietary energy level on performance and pancreas lipase and trypsin activities of 7-days old chicks. Int J Poult Sci. 2004;3(3):234. [Crossref]
  8. Ravindran V, Abdollahi MR. Nutrition and digestive physiology of the broiler chick: State of the art and outlook. Animals. 2021;11(10):2795. [Crossref]  [PubMed]  [PMC]
  9. Shoaib M, Bhatti SA, Ashraf S, Hamid MMA, Javed MM, Amir S, et al. Fat digestion and metabolism: effect of different fat sources and fat mobilisers in broilers diet on growth performance and physiological parameters-a review. Ann Anim Sci. 2023;23(3):641-61. [Crossref]
  10. Shoaib M, Bhatti SA, Nawaz H, Saif-Ur-Rehman M. Effect of lipase and bile acids on growth performance, nutrient digestibility, and meatquality in broilers on energy-diluted diets. Turkish J Vet Anim Sci. 2021;45(1):148-57. [Crossref]
  11. Krogdahl A, Sell JL. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poult Sci. 1989;68(11):1561-8. [Crossref]  [PubMed]
  12. Hu YD, Lan D, Zhu Y, Pang HZ, Mu XP, Hu XF. Effect of diets with different energy and lipase levels on performance, digestibility and carcass trait in broilers. Asian-Australas J Anim Sci. 2018;31(8):1275-84. [Crossref]  [PubMed]  [PMC]
  13. Arshad MA, Faizul H, Bhatti SA, Rehman MS-u, Yousaf W, Younus G, et al. Supplementation of bile acids and lipase in broiler diets for better nutrient utilization and performance: Potential effects and future implications-a review. Ann Anim Sci. 2021;21(3):757-87. [Crossref]
  14. Siyal FA, Babazadeh D, Wang C, Arain MA, Saeed M, Ayasan T, et al. Emulsifiers in the poultry industry. Worlds Poult Sci J. 2017;73(3):611-20. [Crossref]
  15. Nagargoje S, Dhumal M, Nikam M, Khose K. Effect of crude soy lecithin with or without lipase on performance and carcass traits, meat keeping quality and economics of broiler chicken. Int J Livest Res. 2016;6(12):46-54. [Crossref]
  16. Wickramasuriya SS, Macelline SP, Cho HM, Hong JS, Park SH, Heo JM. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Front Vet Sci. 2020;7:Wickramasuriya SS, Macelline SP, Cho HM, Hong JS, Park SH, Heo JM. Physiological effects of a tallow-incorporated diet supplemented with an emulsifier and microbial lipases on broiler chickens. Front Vet Sci. 2020. [Crossref]  [PubMed]  [PMC]
  17. Ravindran V, Tancharoenrat P, Zaefarian F, Ravindran G. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim Feed Sci Technol. 2016;213:1-21. [Crossref]
  18. Wang Y, Yan J, Zhang X, Han B. Tolerance properties and growth performance assessment of Yarrowia lipolytic lipase in broilers. J Appl Anim Res. 2018;46(1):486-91. [Crossref]
  19. Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The lid domain in lipases: Structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol. 2017;5:16. [Crossref]  [PubMed]  [PMC]
  20. López-López O, Cerdán ME, González-Siso MI. Thermus thermophilus as a source of thermostable lipolytic enzymes. Microorganisms. 2015;3(4):792-808. [Crossref]  [PubMed]  [PMC]
  21. Lim SY, Steiner JM, Cridge H. Lipases: it's not just pancreatic lipase! Am J Vet Res. 2022;83(8):ajvr.22.03.0048. [Crossref]  [PubMed]
  22. Kermanshahi H, Maenz DD, Classen HL. Stability of porcine and microbial lipases to conditions that approximate the proventriculus of young birds. Poult Sci. 1998;77(11):1665-70. [Crossref]  [PubMed]
  23. Al-Marzooqi W, Leeson S. Effect of dietary lipase enzyme on gut morphology, gastric motility, and long-term performance of broiler chicks. Poult Sci. 2000;79(7):956-60. [Crossref]  [PubMed]
  24. Carlier H, Bernard A, Caselli C. Digestion and absorption of polyunsaturated fatty acids. Reprod Nutr Dev. 1991;31(5):475-500. [Crossref]  [PubMed]
  25. Ali S, Khan SA, Hamayun M, Lee IJ. The recent advances in the utility of microbial lipases: A review. Microorganisms. 2023;11(2):510. [Crossref]  [PubMed]  [PMC]
  26. Mathivanan R, Saravanan T, Sabareeswaran A, Selvaraj P, Nanjappan K. Microbial lipase production in poultry feed ingredients. Int J Poult Sci. 2006;41(2):202-4.
  27. Bharathi D, Rajalakshmi G. Microbial lipases: An overview of screening, production and purification. Biocatal Agric Biotechnol. 2019;22:101368. [Crossref]
  28. Wickramasuriya SS, Cho HM, Macelline SP, Kim E, Shin TK, Yi YJ, et al. Effect of calcium stearoyl-2 lactylate and lipase supplementation on growth performance, gut health, and nutrient digestibility of broiler chickens. Asian-Australas J Anim Sci. 2020;33(6):981-91. [Crossref]  [PubMed]  [PMC]
  29. Al-Marzooqi W, Leeson S. Evaluation of dietary supplements of lipase, detergent, and crude porcine pancreas on fat utilization by young broiler chicks. Poult Sci. 1999;78(11):1561-6. [Crossref]  [PubMed]
  30. Meng X, Slominski BA, Guenter W. The effect of fat type, carbohydrase, and lipase addition on growth performance and nutrient utilization of young broilers fed wheat-based diets. Poult Sci. 2004;83(10):1718-27. [Crossref]  [PubMed]
  31. Oliveira LSd, Balbino EM, Silva TNS, Ily L, Rocha TCd, Strada ESdO, et al. Use of emulsifier and lipase in feeds for broiler chickens. Semin Cienc Agrar. 2019;40(6 Suppl 2):3181-96. [Crossref]
  32. Arshad M, Bhatti S, Hassan I, Rahman M, Rehman M. Effects of bile acids and lipase supplementation in low-energy diets on growth performance, fat digestibility and meat quality in broiler chickens. Braz J Poult Sci. 2020;22(02):8. [Crossref]
  33. Joshi A, Paratkar SG, Thorat BN. Modification of lecithin by physical, chemical and enzymatic methods. Eur J Lipid Sci Technol. 2006;108(4):363-73. [Crossref]
  34. Andersen FA. Final report on the safety assessment of ceteth-1, -2, -3, -4, -5, -6, -10, -12, -14, -15, -16, -20, -24, -25, -30, and -45. Int J Toxicol. 1999;18(2_suppl):1-8. [Crossref]
  35. Polin D, Wing TL, Ki P, Pell KE. The effect of bile acids and lipase on absorption of tallow in young chicks. Poult Sci. 1980;59(12):2738-43. [Crossref]  [PubMed]
  36. Shabani M, De Marzo D, Esmailzadeh L, Seidavi A, Laudadio V, Tufarelli V. Early phase dietary supplementation of lipase and lecithin affects performance, haematology and immunology of broilers. S Afr J Anim Sci. 2021;51(5):670-7. [Crossref]
  37. Movagharnejad M, Kazemi-Fard M, Rezaei M, Teimuri-Yansari A. Effects of lysophospholipid and lipase enzyme supplementation to low metabolizable energy diets on growth performance, intestinal morphology and microbial population and some blood metabolites in broiler chickens. Braz J Poult Sci. 2020;22(02). [Crossref]
  38. Suresh B, Reddy B, Prabhu T, Manju G, Suma N. Effect of dietary Inclusion of lipid utilizing agents and NSP-degrading enzymes on performance of layers. Anim Nutr Feed Technol. 2014;14(2):379-84. [Crossref]
  39. Brenes A, Centeno C, Viveros A, Arija I. Effect of enzyme addition on the nutritive value of high oleic acid sunflower seeds in chicken diets. Poult Sci. 2008;87(11):2300-10. [Crossref]  [PubMed]
  40. Abu-Taleb AM, Ezzat IE, Saleh M. Effect of immobilized lipase supplementation of diets on the performance of the Japanese quails. Iso Radiat Res. 2004;34(1):187-201.